Implosion dynamics measurements at the National Ignition Facility

Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1–1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% ± 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%–70%) of its initial radius, reduced the shell thickness and improved the final fuel ρR on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell thickness were also examined, both of which indicated that instabilities seeded at the ablation front are a significant source of hydrodynamic mix into the central hot spot. Additionally, a direct test of the surrogacy of cryogenic fuel layered versus gas-filled targets was performed. Together all these measurements have established the fundamental ablative-rocket relationship describing the dependence of implosion velocity on fractional ablator mass remaining. This curve shows a lower-than-expected ablator mass at a given velocity, making the capsule more susceptible to feedthrough of instabilities from the ablation front into the fuel and hot spot. This combination of low velocity and low ablator mass indicates that reaching ignition on the NIF will require >20 μm (∼10%) thicker targets and laser powers at or beyond facility limits.

L. J. Atherton | Robert Heeter | Y. P. Opachich | Marilyn Schneider | Jay D. Salmonson | J. D. Moody | J. D. Kilkenny | D. K. Bradley | John L. Kline | D. A. Callahan | N. Izumi | D. H. Kalantar | S. N. Dixit | Otto L. Landen | Johan A. Frenje | Richard D. Petrasso | T. Döppner | Brian J. MacGowan | Joseph Ralph | Klaus Widmann | Peter M. Celliers | Gilbert W. Collins | H. F. Robey | B. K. Spears | D. S. Clark | Damien G. Hicks | N. Simanovskaia | R. Tommasini | D. R. Farley | A. V. Hamza | G. A. Kyrala | Nathan Meezan | Alex Zylstra | J. R. Rygg | Andrew MacPhee | J. P. Holder | R. E. Olson | Laura Robin Benedetti | H. G. Rinderknecht | Siegfried Glenzer | James McNaney | Melissa Edwards | E. G. Dzenitis | M. J. Moran | A. Nikroo | J. Moody | O. Landen | B. MacGowan | E. Dewald | N. Meezan | D. Clark | J. Holder | J. Kilkenny | D. Kalantar | A. MacPhee | R. Tommasini | L. Atherton | D. Callahan | S. Dixit | E. Dzenitis | M. Edwards | K. Widmann | S. Glenzer | J. Kline | G. Kyrala | A. Nikroo | J. Frenje | R. Petrasso | R. Olson | A. Hamza | B. Spears | N. Izumi | H. Robey | P. Celliers | D. Hicks | D. Bradley | S. Glenn | R. Prasad | A. Mackinnon | J. Salmonson | J. Ralph | W. Hsing | T. Döppner | D. Farley | T. Ma | J. Mcnaney | M. Moran | B. Nathan | H. Rinderknecht | L. Benedetti | Y. Opachich | P. D. Nicola | A. Zylstra | R. Heeter | Jeremy Kroll | A. J. Mackinnon | Warren Hsing | Eduard Dewald | P. Di Nicola | S. F. Khan | J. E. Eggert | S. M. Glenn | T. Ma | B. R. Nathan | R. Prasad | J. Eggert | N. Simanovskaia | J. Kroll | M. Schneider | S. Khan

[1]  Steven W. Haan,et al.  Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .

[2]  G. Zimmerman,et al.  A new quotidian equation of state (QEOS) for hot dense matter , 1988 .

[3]  M J Moran,et al.  Neutron spectrometry--an essential tool for diagnosing implosions at the National Ignition Facility (invited). , 2012, The Review of scientific instruments.

[4]  John Lindl,et al.  A generalized scaling law for the ignition energy of inertial confinement fusion capsules , 2000 .

[5]  Arthur Nobile,et al.  Shock propagation, preheat, and x-ray burnthrough in indirect-drive inertial confinement fusion ablator materials , 2004 .

[6]  J. M. Koning,et al.  Short-wavelength and three-dimensional instability evolution in National Ignition Facility ignition capsule designs , 2011 .

[7]  S. Sutton,et al.  National Ignition Facility laser performance status. , 2007, Applied optics.

[8]  P Bell,et al.  Hot electron measurements in ignition relevant Hohlraums on the National Ignition Facility. , 2010, The Review of scientific instruments.

[9]  E Gullikson,et al.  Soft x-ray images of the laser entrance hole of ignition hohlraums. , 2012, The Review of scientific instruments.

[10]  M J Moran,et al.  The National Ignition Facility neutron time-of-flight system and its initial performance (invited). , 2010, The Review of scientific instruments.

[11]  C. Iglesias,et al.  A new detailed term accounting opacity code for mid-Z elements: TOPAZ , 2003 .

[12]  J. E. Dorband,et al.  Comparing restored HST and VLA imagery of R Aquarii. [Hubble Space Telescope , 1992 .

[13]  L. J. Atherton,et al.  The experimental plan for cryogenic layered target implosions on the National Ignition Facility--The inertial confinement approach to fusion , 2011 .

[14]  J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .

[15]  Gilbert W. Collins,et al.  Convergent ablator performance measurements , 2010 .

[16]  J D Lindl,et al.  Three-wavelength scheme to optimize hohlraum coupling on the National Ignition Facility. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  D. K. Bradley,et al.  Capsule performance optimization in the national ignition campaign , 2009 .

[18]  K. G. Krauter,et al.  Shock Timing experiments on the National Ignition Facility , 2011 .

[19]  John T. Hunt,et al.  Present And Future Performance Of The Nova Laser System , 1989 .

[20]  Peter M. Celliers,et al.  Capsule implosion optimization during the indirect-drive National Ignition Campaign , 2010 .

[21]  C Stoeckl,et al.  South pole bang-time diagnostic on the National Ignition Facility (invited). , 2012, The Review of scientific instruments.

[22]  Gilbert W. Collins,et al.  Equation of state of CH1.36: First-principles molecular dynamics simulations and shock-and-release wave speed measurements , 2012 .

[23]  Jay D. Salmonson,et al.  Increasing robustness of indirect drive capsule designs against short wavelength hydrodynamic instabilities , 2004 .

[24]  Y. Saillard Acceleration and deceleration model of indirect drive ICF capsules , 2006 .

[25]  L. J. Atherton,et al.  Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility , 2010 .

[26]  O. Landen,et al.  X-ray ablation rates in inertial confinement fusion capsule materials , 2011 .

[27]  Goldstein,et al.  Super-transition-arrays: A model for the spectral analysis of hot, dense plasma. , 1989, Physical review. A, General physics.

[28]  P. Michel,et al.  National Ignition Campaign Hohlraum energeticsa) , 2009 .

[29]  C. J. Cerjan,et al.  Hot-spot mix in ignition-scale implosions on the NIF , 2012 .

[30]  L. J. Atherton,et al.  The velocity campaign for ignition on NIFa) , 2012 .

[31]  R Tommasini,et al.  Imaging of high-energy x-ray emission from cryogenic thermonuclear fuel implosions on the NIF. , 2012, The Review of scientific instruments.

[32]  J. D. Moody,et al.  Symmetry tuning for ignition capsules via the symcap techniquea) , 2011 .

[33]  B. Hammel,et al.  The NIF Ignition Program: progress and planning , 2006 .

[34]  Jay D. Salmonson,et al.  Plastic ablator ignition capsule design for the National Ignition Facility , 2010 .

[35]  P Bell,et al.  X-ray streak camera cathode development and timing accuracy of the 4ω ultraviolet fiducial system at the National Ignition Facility. , 2012, The Review of scientific instruments.

[36]  M. J. Edwards,et al.  Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies , 2009, Science.

[37]  John R. Celeste,et al.  A diamond detector for X-ray bang-time measurement at the National Ignition Facility , 2011 .

[38]  Ramon Joe Leeper,et al.  Probing high areal-density cryogenic deuterium-tritium implosions using downscattered neutron spectra measured by the magnetic recoil spectrometera) , 2010 .

[39]  M. J. Pivovaroff,et al.  Images of the laser entrance hole from the static x-ray imager at NIF. , 2010, The Review of scientific instruments.

[40]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[41]  D. K. Bradley,et al.  Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facilitya) , 2009 .

[42]  Bruno Villette,et al.  Multi-keV x-ray conversion efficiencies of laser-preexploded titanium foils , 2005 .

[43]  Neal R. Pederson,et al.  Gated x-ray detector for the National Ignition Facility , 2006 .

[44]  P Datte,et al.  Backscatter measurements for NIF ignition targets (invited). , 2010, The Review of scientific instruments.

[45]  S Telford,et al.  Standard design for National Ignition Facility x-ray streak and framing cameras. , 2010, The Review of scientific instruments.

[46]  Brian Spears,et al.  Influence and measurement of mass ablation in ICF implosions , 2007 .

[47]  R. Levine,et al.  An upper bound for the entropy and its applications to the maximal entropy problem , 1978 .

[48]  Gilbert W. Collins,et al.  Charged-particle spectroscopy for diagnosing shock ρR and strength in NIF implosions. , 2012, The Review of scientific instruments.

[49]  P. Michel,et al.  The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums , 2011 .

[50]  R J Wallace,et al.  The first measurements of soft x-ray flux from ignition scale Hohlraums at the National Ignition Facility using DANTE (invited). , 2010, The Review of scientific instruments.

[51]  P. Michel,et al.  Erratum: ``National Ignition Campaign Hohlraum energetics'' [Phys. Plasmas 17, 056304 (2010)] , 2010 .

[52]  E. T. Alger,et al.  Cryogenic thermonuclear fuel implosions on the National Ignition Facility , 2012 .

[53]  Jay D. Salmonson,et al.  Robustness studies of ignition targets for the National Ignition Facility in two dimensions , 2007 .

[54]  Edward I. Moses,et al.  The National Ignition Facility: enabling fusion ignition for the 21st century , 2004 .

[55]  Marilyn Schneider,et al.  Analysis of the National Ignition Facility ignition hohlraum energetics experiments a) , 2011 .

[56]  L. J. Atherton,et al.  A high-resolution integrated model of the National Ignition Campaign cryogenic layered experimentsa) , 2012 .

[57]  A. Kemp,et al.  Stagnation pressure of imploding shells and ignition energy scaling of inertial confinement fusion targets. , 2001, Physical Review Letters.

[58]  O. Landen,et al.  The physics basis for ignition using indirect-drive targets on the National Ignition Facility , 2004 .

[59]  R. B. Ehrlich,et al.  Assembly of high-areal-density deuterium-tritium fuel from indirectly driven cryogenic implosions. , 2012, Physical review letters.

[60]  Gilbert W. Collins,et al.  Precision equation-of-state measurements on National Ignition Facility ablator materials from 1 to 12 Mbar using laser-driven shock waves , 2012 .

[61]  Samuel A. Letzring,et al.  Initial performance results of the OMEGA laser system , 1997 .

[62]  H B Radousky,et al.  Precision shock tuning on the national ignition facility. , 2012, Physical review letters.

[63]  R. M. Franks,et al.  Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums. , 2010, Physical review letters.

[64]  Jay D. Salmonson,et al.  Performance metrics for Inertial Confinement Fusion implosions: aspects of the technical framework for measuring progress in the National Ignition Campaign , 2011 .

[65]  V. A. Smalyuk,et al.  Diagnosing and controlling mix in National Ignition Facility implosion experiments a) , 2011 .

[66]  Robert L. Kauffman,et al.  Dante soft x-ray power diagnostic for National Ignition Facility , 2004 .

[67]  Jay D. Salmonson,et al.  High-mode Rayleigh-Taylor growth in NIF ignition capsules , 2007 .

[68]  R Tommasini,et al.  Extracting core shape from x-ray images at the National Ignition Facility. , 2012, The Review of scientific instruments.

[69]  W Hibbard,et al.  Design of the National Ignition Facility diagnostic instrument manipulator , 2001 .