Implosion dynamics measurements at the National Ignition Facility
暂无分享,去创建一个
L. J. Atherton | Robert Heeter | Y. P. Opachich | Marilyn Schneider | Jay D. Salmonson | J. D. Moody | J. D. Kilkenny | D. K. Bradley | John L. Kline | D. A. Callahan | N. Izumi | D. H. Kalantar | S. N. Dixit | Otto L. Landen | Johan A. Frenje | Richard D. Petrasso | T. Döppner | Brian J. MacGowan | Joseph Ralph | Klaus Widmann | Peter M. Celliers | Gilbert W. Collins | H. F. Robey | B. K. Spears | D. S. Clark | Damien G. Hicks | N. Simanovskaia | R. Tommasini | D. R. Farley | A. V. Hamza | G. A. Kyrala | Nathan Meezan | Alex Zylstra | J. R. Rygg | Andrew MacPhee | J. P. Holder | R. E. Olson | Laura Robin Benedetti | H. G. Rinderknecht | Siegfried Glenzer | James McNaney | Melissa Edwards | E. G. Dzenitis | M. J. Moran | A. Nikroo | J. Moody | O. Landen | B. MacGowan | E. Dewald | N. Meezan | D. Clark | J. Holder | J. Kilkenny | D. Kalantar | A. MacPhee | R. Tommasini | L. Atherton | D. Callahan | S. Dixit | E. Dzenitis | M. Edwards | K. Widmann | S. Glenzer | J. Kline | G. Kyrala | A. Nikroo | J. Frenje | R. Petrasso | R. Olson | A. Hamza | B. Spears | N. Izumi | H. Robey | P. Celliers | D. Hicks | D. Bradley | S. Glenn | R. Prasad | A. Mackinnon | J. Salmonson | J. Ralph | W. Hsing | T. Döppner | D. Farley | T. Ma | J. Mcnaney | M. Moran | B. Nathan | H. Rinderknecht | L. Benedetti | Y. Opachich | P. D. Nicola | A. Zylstra | R. Heeter | Jeremy Kroll | A. J. Mackinnon | Warren Hsing | Eduard Dewald | P. Di Nicola | S. F. Khan | J. E. Eggert | S. M. Glenn | T. Ma | B. R. Nathan | R. Prasad | J. Eggert | N. Simanovskaia | J. Kroll | M. Schneider | S. Khan
[1] Steven W. Haan,et al. Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .
[2] G. Zimmerman,et al. A new quotidian equation of state (QEOS) for hot dense matter , 1988 .
[3] M J Moran,et al. Neutron spectrometry--an essential tool for diagnosing implosions at the National Ignition Facility (invited). , 2012, The Review of scientific instruments.
[4] John Lindl,et al. A generalized scaling law for the ignition energy of inertial confinement fusion capsules , 2000 .
[5] Arthur Nobile,et al. Shock propagation, preheat, and x-ray burnthrough in indirect-drive inertial confinement fusion ablator materials , 2004 .
[6] J. M. Koning,et al. Short-wavelength and three-dimensional instability evolution in National Ignition Facility ignition capsule designs , 2011 .
[7] S. Sutton,et al. National Ignition Facility laser performance status. , 2007, Applied optics.
[8] P Bell,et al. Hot electron measurements in ignition relevant Hohlraums on the National Ignition Facility. , 2010, The Review of scientific instruments.
[9] E Gullikson,et al. Soft x-ray images of the laser entrance hole of ignition hohlraums. , 2012, The Review of scientific instruments.
[10] M J Moran,et al. The National Ignition Facility neutron time-of-flight system and its initial performance (invited). , 2010, The Review of scientific instruments.
[11] C. Iglesias,et al. A new detailed term accounting opacity code for mid-Z elements: TOPAZ , 2003 .
[12] J. E. Dorband,et al. Comparing restored HST and VLA imagery of R Aquarii. [Hubble Space Telescope , 1992 .
[13] L. J. Atherton,et al. The experimental plan for cryogenic layered target implosions on the National Ignition Facility--The inertial confinement approach to fusion , 2011 .
[14] J. Lindl. Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .
[15] Gilbert W. Collins,et al. Convergent ablator performance measurements , 2010 .
[16] J D Lindl,et al. Three-wavelength scheme to optimize hohlraum coupling on the National Ignition Facility. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] D. K. Bradley,et al. Capsule performance optimization in the national ignition campaign , 2009 .
[18] K. G. Krauter,et al. Shock Timing experiments on the National Ignition Facility , 2011 .
[19] John T. Hunt,et al. Present And Future Performance Of The Nova Laser System , 1989 .
[20] Peter M. Celliers,et al. Capsule implosion optimization during the indirect-drive National Ignition Campaign , 2010 .
[21] C Stoeckl,et al. South pole bang-time diagnostic on the National Ignition Facility (invited). , 2012, The Review of scientific instruments.
[22] Gilbert W. Collins,et al. Equation of state of CH1.36: First-principles molecular dynamics simulations and shock-and-release wave speed measurements , 2012 .
[23] Jay D. Salmonson,et al. Increasing robustness of indirect drive capsule designs against short wavelength hydrodynamic instabilities , 2004 .
[24] Y. Saillard. Acceleration and deceleration model of indirect drive ICF capsules , 2006 .
[25] L. J. Atherton,et al. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility , 2010 .
[26] O. Landen,et al. X-ray ablation rates in inertial confinement fusion capsule materials , 2011 .
[27] Goldstein,et al. Super-transition-arrays: A model for the spectral analysis of hot, dense plasma. , 1989, Physical review. A, General physics.
[28] P. Michel,et al. National Ignition Campaign Hohlraum energeticsa) , 2009 .
[29] C. J. Cerjan,et al. Hot-spot mix in ignition-scale implosions on the NIF , 2012 .
[30] L. J. Atherton,et al. The velocity campaign for ignition on NIFa) , 2012 .
[31] R Tommasini,et al. Imaging of high-energy x-ray emission from cryogenic thermonuclear fuel implosions on the NIF. , 2012, The Review of scientific instruments.
[32] J. D. Moody,et al. Symmetry tuning for ignition capsules via the symcap techniquea) , 2011 .
[33] B. Hammel,et al. The NIF Ignition Program: progress and planning , 2006 .
[34] Jay D. Salmonson,et al. Plastic ablator ignition capsule design for the National Ignition Facility , 2010 .
[35] P Bell,et al. X-ray streak camera cathode development and timing accuracy of the 4ω ultraviolet fiducial system at the National Ignition Facility. , 2012, The Review of scientific instruments.
[36] M. J. Edwards,et al. Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies , 2009, Science.
[37] John R. Celeste,et al. A diamond detector for X-ray bang-time measurement at the National Ignition Facility , 2011 .
[38] Ramon Joe Leeper,et al. Probing high areal-density cryogenic deuterium-tritium implosions using downscattered neutron spectra measured by the magnetic recoil spectrometera) , 2010 .
[39] M. J. Pivovaroff,et al. Images of the laser entrance hole from the static x-ray imager at NIF. , 2010, The Review of scientific instruments.
[40] Forrest J. Rogers,et al. Updated Opal Opacities , 1996 .
[41] D. K. Bradley,et al. Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facilitya) , 2009 .
[42] Bruno Villette,et al. Multi-keV x-ray conversion efficiencies of laser-preexploded titanium foils , 2005 .
[43] Neal R. Pederson,et al. Gated x-ray detector for the National Ignition Facility , 2006 .
[44] P Datte,et al. Backscatter measurements for NIF ignition targets (invited). , 2010, The Review of scientific instruments.
[45] S Telford,et al. Standard design for National Ignition Facility x-ray streak and framing cameras. , 2010, The Review of scientific instruments.
[46] Brian Spears,et al. Influence and measurement of mass ablation in ICF implosions , 2007 .
[47] R. Levine,et al. An upper bound for the entropy and its applications to the maximal entropy problem , 1978 .
[48] Gilbert W. Collins,et al. Charged-particle spectroscopy for diagnosing shock ρR and strength in NIF implosions. , 2012, The Review of scientific instruments.
[49] P. Michel,et al. The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums , 2011 .
[50] R J Wallace,et al. The first measurements of soft x-ray flux from ignition scale Hohlraums at the National Ignition Facility using DANTE (invited). , 2010, The Review of scientific instruments.
[51] P. Michel,et al. Erratum: ``National Ignition Campaign Hohlraum energetics'' [Phys. Plasmas 17, 056304 (2010)] , 2010 .
[52] E. T. Alger,et al. Cryogenic thermonuclear fuel implosions on the National Ignition Facility , 2012 .
[53] Jay D. Salmonson,et al. Robustness studies of ignition targets for the National Ignition Facility in two dimensions , 2007 .
[54] Edward I. Moses,et al. The National Ignition Facility: enabling fusion ignition for the 21st century , 2004 .
[55] Marilyn Schneider,et al. Analysis of the National Ignition Facility ignition hohlraum energetics experiments a) , 2011 .
[56] L. J. Atherton,et al. A high-resolution integrated model of the National Ignition Campaign cryogenic layered experimentsa) , 2012 .
[57] A. Kemp,et al. Stagnation pressure of imploding shells and ignition energy scaling of inertial confinement fusion targets. , 2001, Physical Review Letters.
[58] O. Landen,et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility , 2004 .
[59] R. B. Ehrlich,et al. Assembly of high-areal-density deuterium-tritium fuel from indirectly driven cryogenic implosions. , 2012, Physical review letters.
[60] Gilbert W. Collins,et al. Precision equation-of-state measurements on National Ignition Facility ablator materials from 1 to 12 Mbar using laser-driven shock waves , 2012 .
[61] Samuel A. Letzring,et al. Initial performance results of the OMEGA laser system , 1997 .
[62] H B Radousky,et al. Precision shock tuning on the national ignition facility. , 2012, Physical review letters.
[63] R. M. Franks,et al. Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums. , 2010, Physical review letters.
[64] Jay D. Salmonson,et al. Performance metrics for Inertial Confinement Fusion implosions: aspects of the technical framework for measuring progress in the National Ignition Campaign , 2011 .
[65] V. A. Smalyuk,et al. Diagnosing and controlling mix in National Ignition Facility implosion experiments a) , 2011 .
[66] Robert L. Kauffman,et al. Dante soft x-ray power diagnostic for National Ignition Facility , 2004 .
[67] Jay D. Salmonson,et al. High-mode Rayleigh-Taylor growth in NIF ignition capsules , 2007 .
[68] R Tommasini,et al. Extracting core shape from x-ray images at the National Ignition Facility. , 2012, The Review of scientific instruments.
[69] W Hibbard,et al. Design of the National Ignition Facility diagnostic instrument manipulator , 2001 .