Metaproteomics analysis of microbial diversity of human saliva and tongue dorsum in young healthy individuals

ABSTRACT Background: The human oral microbiome influences initiation or progression of diseases like caries or periodontitis. Metaproteomics approaches enable the simultaneous investigation of microbial and host proteins and their interactions to improve understanding of oral diseases. Objective: In this study, we provide a detailed metaproteomics perspective of the composition of salivary and tongue microbial communities of young healthy subjects. Design: Stimulated saliva and tongue samples were collected from 24 healthy volunteers, subjected to shotgun nLC-MS/MS and analyzed by the Trans-Proteomic Pipeline and the Prophane tool. Results: 3,969 bacterial and 1,857 human proteins could be identified from saliva and tongue, respectively. In total, 1,971 bacterial metaproteins and 1,154 human proteins were shared in both sample types. Twice the amount of bacterial metaproteins were uniquely identified for the tongue dorsum compared to saliva. Overall, 107 bacterial genera of seven phyla formed the microbiome. Comparative analysis identified significant functional differences between the microbial biofilm on the tongue and the microbiome of saliva. Conclusion: Even if the microbial communities of saliva and tongue dorsum showed a strong similarity based on identified protein functions and deduced bacterial composition, certain specific characteristics were observed. Both microbiomes exhibit a great diversity with seven genera being most abundant.

[1]  C. Dawes Circadian rhythms in human salivary flow rate and composition , 1972, The Journal of physiology.

[2]  T. Muth,et al.  The impact of sequence database choice on metaproteomic results in gut microbiota studies , 2016, Microbiome.

[3]  J. Browning,et al.  Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity , 1986, Nature.

[4]  Y. Yamashita,et al.  The oral microbiome and human health. , 2017, Journal of oral science.

[5]  K. Zengler,et al.  Elucidation of complexity and prediction of interactions in microbial communities , 2017, Microbial biotechnology.

[6]  C. Warinner,et al.  A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[7]  R. Kent,et al.  Subgingival and Tongue Microbiota during Early Periodontitis , 2006, Journal of dental research.

[8]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[9]  M. Flak,et al.  Welcome to the Microgenderome , 2013, Science.

[10]  U. Völker,et al.  Cross-Sectional Association of Salivary Proteins with Age, Sex, Body Mass Index, Smoking, and Education. , 2017, Journal of proteome research.

[11]  J. Clemente,et al.  Human gut microbiome viewed across age and geography , 2012, Nature.

[12]  Xiaolin Tian,et al.  Quorum Sensing and Bacterial Social Interactions in Biofilms , 2012, Sensors.

[13]  Jun Sun,et al.  Nutritional Correlates of Human Oral Microbiome , 2017, Journal of the American College of Nutrition.

[14]  Peng-Jie Xian,et al.  The Oral Microbiome Bank of China , 2018, International Journal of Oral Science.

[15]  Agapi I. Doulgeraki,et al.  Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens , 2015, Front. Microbiol..

[16]  Philipp E. Geyer,et al.  Ultra-deep and quantitative saliva proteome reveals dynamics of the oral microbiome , 2016, Genome Medicine.

[17]  R. Heyer,et al.  The MetaProteomeAnalyzer: a powerful open-source software suite for metaproteomics data analysis and interpretation. , 2015, Journal of proteome research.

[18]  P. Bork,et al.  Enterotypes of the human gut microbiome , 2011, Nature.

[19]  Timothy J Griffin,et al.  Deep metaproteomic analysis of human salivary supernatant , 2012, Proteomics.

[20]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[21]  Michael K. Coleman,et al.  Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. , 2006, Journal of proteome research.

[22]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[23]  L. Ercolani,et al.  Isolation and complete sequence of a functional human glyceraldehyde-3-phosphate dehydrogenase gene. , 1988, The Journal of biological chemistry.

[24]  C. Dutta,et al.  Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity , 2017, Front. Microbiol..

[25]  Niklaus J. Grünwald,et al.  Metacoder: An R package for visualization and manipulation of community taxonomic diversity data , 2016, bioRxiv.

[26]  D. Ojcius,et al.  The oral microbiota: living with a permanent guest. , 2009, DNA and cell biology.

[27]  T. Griffin,et al.  A metaproteomic analysis of the human salivary microbiota by three-dimensional peptide fractionation and tandem mass spectrometry. , 2010, Molecular oral microbiology.

[28]  Susan M. Huse,et al.  Defining the healthy "core microbiome" of oral microbial communities , 2009, BMC Microbiology.

[29]  Rita R. Colwell,et al.  Microbial Community Profiling of Human Saliva Using Shotgun Metagenomic Sequencing , 2014, PloS one.

[30]  M. Rizzo,et al.  Periodontitis and mechanisms of cardiometabolic risk: Novel insights and future perspectives. , 2019, Biochimica et biophysica acta. Molecular basis of disease.

[31]  William Stafford Noble,et al.  Estimating relative abundances of proteins from shotgun proteomics data , 2012, BMC Bioinformatics.

[32]  Natalie I. Tasman,et al.  A Cross-platform Toolkit for Mass Spectrometry and Proteomics , 2012, Nature Biotechnology.

[33]  C. Huttenhower,et al.  The healthy human microbiome , 2016, Genome Medicine.

[34]  R. Lamont,et al.  Oral microbial communities in sickness and in health. , 2005, Trends in microbiology.

[35]  J. Izard,et al.  The Human Oral Microbiome , 2010, Journal of bacteriology.

[36]  M. Blaser,et al.  Microbiome and malignancy. , 2011, Cell host & microbe.

[37]  Alexander F. Auch,et al.  MEGAN analysis of metagenomic data. , 2007, Genome research.

[38]  Jizhong Zhou,et al.  Taxonomic and Functional Analyses of the Supragingival Microbiome from Caries-Affected and Caries-Free Hosts , 2018, Microbial Ecology.

[39]  A. Haffajee,et al.  The microbiota on different oral surfaces in healthy children. , 2009, Oral microbiology and immunology.

[40]  B. Paster,et al.  Temporal Stability of the Salivary Microbiota in Oral Health , 2016, PloS one.

[41]  J. Zhao,et al.  Microbial Similarity and Preference for Specific Sites in Healthy Oral Cavity and Esophagus , 2018, Front. Microbiol..

[42]  Leah M. Feazel,et al.  Sex Differences in the Gut Microbiome Drive Hormone-Dependent Regulation of Autoimmunity , 2013, Science.

[43]  J. A. Aas,et al.  Defining the Normal Bacterial Flora of the Oral Cavity , 2005, Journal of Clinical Microbiology.

[44]  Michael J MacCoss,et al.  A Deeper Look into Comet—Implementation and Features , 2015, Journal of The American Society for Mass Spectrometry.

[45]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[46]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[47]  A. Camilli,et al.  LPLUNC1 modulates innate immune responses to Vibrio cholerae. , 2011, The Journal of infectious diseases.

[48]  M. Johansson,et al.  Proteomic analyses of the two mucus layers of the colon barrier reveal that their main component, the Muc2 mucin, is strongly bound to the Fcgbp protein. , 2009, Journal of proteome research.

[49]  Joshua N. Adkins,et al.  Comparative Bacterial Proteomics: Analysis of the Core Genome Concept , 2008, PloS one.

[50]  Audrey Renson,et al.  “Under the Skin” and into the Gut: Social Epidemiology of the Microbiome , 2018, Current Epidemiology Reports.

[51]  B. Paster,et al.  Salivary bacterial fingerprints of established oral disease revealed by the Human Oral Microbe Identification using Next Generation Sequencing (HOMINGS) technique , 2016, Journal of oral microbiology.

[52]  H. Harmsen,et al.  The tongue microbiome in healthy subjects and patients with intra-oral halitosis , 2017, Journal of Breath Research.

[53]  S. Humphrey,et al.  A review of saliva: normal composition, flow, and function. , 2001, The Journal of prosthetic dentistry.

[54]  Levi Waldron,et al.  Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples , 2012, Genome Biology.

[55]  J. Schröder,et al.  Human leukocyte elastase and cathepsin G are specific inhibitors of C5a‐dependent neutrophil enzyme release and chemotaxis , 2004, Experimental dermatology.

[56]  Natalie I. Tasman,et al.  iProphet: Multi-level Integrative Analysis of Shotgun Proteomic Data Improves Peptide and Protein Identification Rates and Error Estimates* , 2011, Molecular & Cellular Proteomics.

[57]  D. Belstrøm,et al.  The role of natural salivary defences in maintaining a healthy oral microbiota. , 2019, Journal of dentistry.

[58]  S. Ran,et al.  Bacterial Diversity and Community Structure of Supragingival Plaques in Adults with Dental Health or Caries Revealed by 16S Pyrosequencing , 2016, Front. Microbiol..

[59]  R. Ma,et al.  The Impact of Various Time Intervals on the Supragingival Plaque Dynamic Core Microbiome , 2015, PloS one.

[60]  Lan-Chen Kuo,et al.  Associations between periodontal diseases and systemic diseases: a review of the inter-relationships and interactions with diabetes, respiratory diseases, cardiovascular diseases and osteoporosis. , 2008, Public health.

[61]  J. Buhmann,et al.  Protein Identification False Discovery Rates for Very Large Proteomics Data Sets Generated by Tandem Mass Spectrometry* , 2009, Molecular & Cellular Proteomics.

[62]  Mihai Pop,et al.  Deep Sequencing of the Oral Microbiome Reveals Signatures of Periodontal Disease , 2012, PloS one.

[63]  J. A. Aas,et al.  The breadth of bacterial diversity in the human periodontal pocket and other oral sites. , 2006, Periodontology 2000.

[64]  S. Papagerakis,et al.  Clock Genes Show Circadian Rhythms in Salivary Glands , 2012, Journal of dental research.

[65]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[66]  Mehdi Mirzaei,et al.  Less label, more free: Approaches in label‐free quantitative mass spectrometry , 2011, Proteomics.

[67]  D. P. Lewis,et al.  Support for the Microgenderome: Associations in a Human Clinical Population , 2016, Scientific Reports.

[68]  F. Bäckhed,et al.  Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. , 2012, Cell host & microbe.

[69]  R. Watt,et al.  Salivary microbiome in non-oral disease: A summary of evidence and commentary. , 2017, Archives of oral biology.

[70]  Y. Chai,et al.  Molecular and Cellular Regulatory Mechanisms of Tongue Myogenesis , 2012, Journal of dental research.

[71]  B. Leggett,et al.  Numerical ecology validates a biogeographical distribution and gender-based effect on mucosa-associated bacteria along the human colon , 2011, The ISME Journal.

[72]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[73]  S. Fuchs,et al.  Comparative analysis of Salivette® and paraffin gum preparations for establishment of a metaproteomics analysis pipeline for stimulated human saliva , 2018, Journal of oral microbiology.

[74]  Thilo Muth,et al.  Navigating through metaproteomics data: A logbook of database searching , 2015, Proteomics.

[75]  A. Mira,et al.  Microbial Geography of the Oral Cavity , 2013, Journal of dental research.

[76]  T. Köcher,et al.  Costimulation induced phosphorylation of L‐plastin facilitates surface transport of the T cell activation molecules CD69 and CD25 , 2007, European journal of immunology.

[77]  W. D. de Vos,et al.  Gender-Specific Associations Between Saliva Microbiota and Body Size , 2019, Front. Microbiol..

[78]  J. Lukacs,et al.  Explaining sex differences in dental caries prevalence: Saliva, hormones, and “life‐history” etiologies , 2006, American journal of human biology : the official journal of the Human Biology Council.

[79]  J. Eng,et al.  Comet: An open‐source MS/MS sequence database search tool , 2013, Proteomics.

[80]  F. Chen,et al.  Supragingival Plaque Microbial Community Analysis of Children with Halitosis. , 2016, Journal of microbiology and biotechnology.

[81]  Shuwen Han,et al.  Potential screening and early diagnosis method for cancer: Tongue diagnosis , 2016, International journal of oncology.

[82]  Kun Tang,et al.  Global diversity in the human salivary microbiome. , 2009, Genome research.

[83]  W. Wade,et al.  The oral microbiome – an update for oral healthcare professionals , 2016, BDJ.

[84]  Jingqing Hu,et al.  Bacillus as a potential diagnostic marker for yellow tongue coating , 2016, Scientific Reports.

[85]  Wen-Han Yu,et al.  The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information , 2010, Database J. Biol. Databases Curation.

[86]  L. Jensen,et al.  Metaproteomics of saliva identifies human protein markers specific for individuals with periodontitis and dental caries compared to orally healthy controls , 2016, PeerJ.

[87]  P. Chain,et al.  Community and gene composition of a human dental plaque microbiota obtained by metagenomic sequencing. , 2010, Molecular oral microbiology.

[88]  K. Nelson,et al.  Host Genetic Control of the Oral Microbiome in Health and Disease. , 2017, Cell host & microbe.

[89]  Howard C. Tenenbaum,et al.  Inter-personal diversity and temporal dynamics of dental, tongue, and salivary microbiota in the healthy oral cavity , 2017, npj Biofilms and Microbiomes.

[90]  D. Peruzzo,et al.  Periodontal disease as a risk factor for aspiration pneumonia: a systematic review = Doença periodontal como fator de risco para pneumonia aspirativa: uma revisão sistemática , 2016 .

[91]  U. Völker,et al.  Comparative evaluation of saliva collection methods for proteome analysis. , 2013, Clinica chimica acta; international journal of clinical chemistry.

[92]  D. Benndorf,et al.  Searching for a needle in a stack of needles: challenges in metaproteomics data analysis. , 2013, Molecular bioSystems.

[93]  F. Tanwir,et al.  Oral microbial habitat a dynamic entity. , 2012, Journal of oral biology and craniofacial research.

[94]  J. Long,et al.  Association of oral microbiome with type 2 diabetes risk , 2017, Journal of periodontal research.

[95]  L. Mur,et al.  The human salivary microbiome exhibits temporal stability in bacterial diversity. , 2015, FEMS microbiology ecology.

[96]  Sébastien Lê,et al.  FactoMineR: An R Package for Multivariate Analysis , 2008 .

[97]  Linfeng Wu,et al.  Role of spectral counting in quantitative proteomics , 2010, Expert review of proteomics.

[98]  A. Gustafsson,et al.  Salivary microbial profiles in relation to age, periodontal, and systemic diseases , 2018, PloS one.

[99]  S. Hultgren,et al.  Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. , 2013, Cold Spring Harbor perspectives in medicine.

[100]  Adam B. Olshen,et al.  Changes in Abundance of Oral Microbiota Associated with Oral Cancer , 2014, PloS one.

[101]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[102]  A. Noegel,et al.  NUANCE, a giant protein connecting the nucleus and actin cytoskeleton. , 2002, Journal of cell science.

[103]  X. Li,et al.  Identification of a role for TRIM29 in the control of innate immunity in the respiratory tract , 2016, Nature Immunology.

[104]  Zhao Wang,et al.  Oral microbiota: A new view of body health , 2019, Food Science and Human Wellness.

[105]  Lennart Martens,et al.  The challenge of metaproteomic analysis in human samples , 2016, Expert review of proteomics.

[106]  F. Dewhirst,et al.  Bacterial Diversity in Human Subgingival Plaque , 2001, Journal of bacteriology.

[107]  R. Milo,et al.  Revised Estimates for the Number of Human and Bacteria Cells in the Body , 2016, bioRxiv.

[108]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[109]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[110]  W. Siqueira,et al.  Salivary Proteome and Its Genetic Polymorphisms , 2007, Annals of the New York Academy of Sciences.

[111]  M. Washburn,et al.  Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors , 2006, Proceedings of the National Academy of Sciences.

[112]  G. Ginsburg,et al.  The oral microbiome in health and disease and the potential impact on personalized dental medicine. , 2012, Oral diseases.