The timescale of early land plant evolution

Significance Establishing the timescale of early land plant evolution is essential to testing hypotheses on the coevolution of land plants and Earth’s System. Here, we establish a timescale for early land plant evolution that integrates over competing hypotheses on bryophyte−tracheophyte relationships. We estimate land plants to have emerged in a middle Cambrian–Early Ordovocian interval, and vascular plants to have emerged in the Late Ordovician−Silurian. This timescale implies an early establishment of terrestrial ecosystems by land plants that is in close accord with recent estimates for the origin of terrestrial animal lineages. Biogeochemical models that are constrained by the fossil record of early land plants, or attempt to explain their impact, must consider a much earlier, middle Cambrian–Early Ordovician, origin. Establishing the timescale of early land plant evolution is essential for testing hypotheses on the coevolution of land plants and Earth’s System. The sparseness of early land plant megafossils and stratigraphic controls on their distribution make the fossil record an unreliable guide, leaving only the molecular clock. However, the application of molecular clock methodology is challenged by the current impasse in attempts to resolve the evolutionary relationships among the living bryophytes and tracheophytes. Here, we establish a timescale for early land plant evolution that integrates over topological uncertainty by exploring the impact of competing hypotheses on bryophyte−tracheophyte relationships, among other variables, on divergence time estimation. We codify 37 fossil calibrations for Viridiplantae following best practice. We apply these calibrations in a Bayesian relaxed molecular clock analysis of a phylogenomic dataset encompassing the diversity of Embryophyta and their relatives within Viridiplantae. Topology and dataset sizes have little impact on age estimates, with greater differences among alternative clock models and calibration strategies. For all analyses, a Cambrian origin of Embryophyta is recovered with highest probability. The estimated ages for crown tracheophytes range from Late Ordovician to late Silurian. This timescale implies an early establishment of terrestrial ecosystems by land plants that is in close accord with recent estimates for the origin of terrestrial animal lineages. Biogeochemical models that are constrained by the fossil record of early land plants, or attempt to explain their impact, must consider the implications of a much earlier, middle Cambrian–Early Ordovician, origin.

[1]  M. O'Donoghue The Devonian Period , 2005 .

[2]  E. Berry The Upper Cretaceous and Eocene Floras of South Carolina and Georgia , 2017 .

[3]  Xin Wang,et al.  Yuhania: a unique angiosperm from the Middle Jurassic of Inner Mongolia, China , 2016, Historical biology.

[4]  G. Rothwell,et al.  Krassiloviella limbelloides gen. et sp. nov.: Additional Diversity in the Hypnanaean Moss Family Tricostaceae (Valanginian, Vancouver Island, British Columbia) , 2016, International Journal of Plant Sciences.

[5]  T. Lenton,et al.  Earliest land plants created modern levels of atmospheric oxygen , 2016, Proceedings of the National Academy of Sciences.

[6]  S. Holland The non-uniformity of fossil preservation , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[7]  Mark N. Puttick,et al.  A molecular palaeobiological exploration of arthropod terrestrialization , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[8]  Philip C J Donoghue,et al.  The evolution of methods for establishing evolutionary timescales , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[9]  G. Sun,et al.  Accelerated evolution of early angiosperms: Evidence from ranunculalean phylogeny by integrating living and fossil data , 2016 .

[10]  L. Ainsaar,et al.  Age of the Kalana Lagerstätte, early Silurian, Estonia , 2016 .

[11]  P. Strother Systematics and evolutionary significance of some new cryptospores from the Cambrian of eastern Tennessee, USA , 2016 .

[12]  Michelle L. Hart,et al.  Divergence times and the evolution of morphological complexity in an early land plant lineage (Marchantiopsida) with a slow molecular rate. , 2016, The New phytologist.

[13]  Zhongjian Liu,et al.  A Whole Plant Herbaceous Angiosperm from the Middle Jurassic of China , 2016 .

[14]  Xin Wang,et al.  A perfect flower from the Jurassic of China , 2015, Historical biology.

[15]  B. Crandall-Stotler,et al.  Permanent spore dyads are not ‘a thing of the past’: on their occurrence in the liverwort Haplomitrium (Haplomitriopsida) , 2015 .

[16]  Ziheng Yang,et al.  Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular Timescales , 2015, Current Biology.

[17]  G. Rothwell,et al.  Exploring the fossil history of pleurocarpous mosses: Tricostaceae fam. nov. from the Cretaceous of Vancouver Island, Canada. , 2015, American journal of botany.

[18]  J. Raven,et al.  Could land‐based early photosynthesizing ecosystems have bioengineered the planet in mid‐Palaeozoic times? , 2015 .

[19]  J. Marshall,et al.  Investigating Devonian trees as geo‐engineers of past climates: linking palaeosols to palaeobotany and experimental geobiology , 2015 .

[20]  D. Beerling,et al.  Constraining the role of early land plants in Palaeozoic weathering and global cooling , 2015, Proceedings of the Royal Society B: Biological Sciences.

[21]  T. Katagiri,et al.  Validation of ordinal and family names for a Triassic fossil liverwort, Naiadita (Naiaditaceae, Marchantiopsida) , 2015 .

[22]  M. Gandolfo,et al.  Monocot fossils suitable for molecular dating analyses , 2015 .

[23]  Kate L. Hertweck,et al.  Phylogenetics, divergence times and diversification from three genomic partitions in monocots , 2015 .

[24]  J. C. Villarreal,et al.  Spores of relictual bryophytes: Diverse adaptations to life on land , 2015 .

[25]  J. Doyle Recognising angiosperm clades in the Early Cretaceous fossil record , 2015 .

[26]  M. Selosse,et al.  Plants, fungi and oomycetes: a 400-million year affair that shapes the biosphere. , 2015, The New phytologist.

[27]  H. Sauquet,et al.  Fossil calibration of Magnoliidae, an ancient lineage of angiosperms , 2015 .

[28]  Viirika Mastik,et al.  New dasycladalean algal species from the Kalana Lagerstätte (Silurian, Estonia) , 2015, Journal of Paleontology.

[29]  P. Donoghue,et al.  Calibration uncertainty in molecular dating analyses: there is no substitute for the prior evaluation of time priors , 2015, Proceedings of the Royal Society B: Biological Sciences.

[30]  N. Butterfield Early evolution of the Eukaryota , 2015 .

[31]  P. Strother,et al.  Cryptospores from the Hanadir Shale Member of the Qasim Formation, Ordovician (Darriwilian) of Saudi Arabia: taxonomy and systematics , 2015 .

[32]  K. Renzaglia,et al.  Callose is integral to the development of permanent tetrads in the liverwort Sphaerocarpos , 2014, Planta.

[33]  Yang Liu,et al.  Mitochondrial phylogenomics of early land plants: mitigating the effects of saturation, compositional heterogeneity, and codon-usage bias. , 2014, Systematic biology.

[34]  Saravanaraj N. Ayyampalayam,et al.  Phylotranscriptomic analysis of the origin and early diversification of land plants , 2014, Proceedings of the National Academy of Sciences.

[35]  B. Laenen,et al.  Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts , 2014, Nature Communications.

[36]  D. Edwards,et al.  Cryptospores and cryptophytes reveal hidden diversity in early land floras. , 2014, The New phytologist.

[37]  W. Elbert,et al.  Estimating impacts of lichens and bryophytes on global biogeochemical cycles , 2014 .

[38]  T. Embley,et al.  Conflicting Phylogenies for Early Land Plants are Caused by Composition Biases among Synonymous Substitutions , 2014, Systematic biology.

[39]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[40]  D. Penny,et al.  Streptophyte algae and the origin of land plants revisited using heterogeneous models with three new algal chloroplast genomes. , 2014, Molecular biology and evolution.

[41]  Pamela S Soltis,et al.  From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes , 2014, BMC Evolutionary Biology.

[42]  C. Labandeira A paleobiologic perspective on plant-insect interactions. , 2013, Current opinion in plant biology.

[43]  C. Davis,et al.  Combined Morphological and Molecular Phylogeny of the Clusioid Clade (Malpighiales) and the Placement of the Ancient Rosid Macrofossil Paleoclusia , 2013, International Journal of Plant Sciences.

[44]  Yuan-long Zhao,et al.  Comparison between cryptospores from the Cambrian Log Cabin Member, Pioche Shale, Nevada, USA and similar specimens from the Cambrian Kaili Formation, Guizhou, China , 2013, Science China Earth Sciences.

[45]  K. Nixon,et al.  Fossil Ericales from the Upper Cretaceous of New Jersey , 2013, International Journal of Plant Sciences.

[46]  K. Hilu,et al.  Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. , 2013, American journal of botany.

[47]  B. Mohr,et al.  Schenkeriphyllum glanduliferum, a new magnolialean angiosperm from the Early Cretaceous of Northern Gondwana and its relationships to fossil and modern Magnoliales , 2013 .

[48]  B. Richards CURRENT STATUS OF THE INTERNATIONAL CARBONIFEROUS TIME SCALE , 2013 .

[49]  J. Frahm,et al.  More fossil bryophytes from Baltic amber , 2013 .

[50]  J. Barrick,et al.  Midcontinent Pennsylvanian conodont zonation , 2013 .

[51]  Hao Shougang,et al.  The early Devonian posongchong flora of Yunnan : a contribution to an understanding of the evolution and early diversification of vascular plants , 2013 .

[52]  Jinzhuang Xue,et al.  A new basal euphyllophyte, Pauthecophyton gen. nov., from the Lower Devonian (Pragian) of Yunnan, China , 2012 .

[53]  S. Hemming,et al.  Chronological evidence for extension of the Jehol Biota into Southern China , 2012 .

[54]  H. Kerp,et al.  Oldest known mosses discovered in Mississippian (late Visean) strata of Germany , 2012 .

[55]  Seraina Klopfstein,et al.  A Total-Evidence Approach to Dating with Fossils, Applied to the Early Radiation of the Hymenoptera , 2012, Systematic biology.

[56]  M. Andreae,et al.  Contribution of cryptogamic covers to the global cycles of carbon and nitrogen , 2012 .

[57]  Cheng-Sen Li,et al.  Riccardiothallus devonicus gen. et sp. nov., the earliest simple thalloid liverwort from the Lower Devonian of Yunnan, China , 2012 .

[58]  Charles H. Wellman,et al.  A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[59]  M. Gibling,et al.  Palaeozoic landscapes shaped by plant evolution , 2012 .

[60]  T. Lenton,et al.  First plants cooled the Ordovician , 2012 .

[61]  ISABEL CORTEZ CHRISTIANO DE SOUZA,et al.  Permian bryophytes of Western Gondwanaland from the Paraná Basin in Brazil , 2012 .

[62]  Christopher,et al.  Best Practices for Justifying Fossil Calibrations , 2011, Systematic biology.

[63]  P. Godefroit Bernissart Dinosaurs and Early Cretaceous Terrestrial Ecosystems , 2012 .

[64]  L. Graham,et al.  Aeroterrestrial Coleochaete (Streptophyta, Coleochaetales) models early plant adaptation to land. , 2012, American journal of botany.

[65]  Ziheng Yang,et al.  Exploring uncertainty in the calibration of the molecular clock , 2012, Biology Letters.

[66]  H. S. Rai,et al.  Recent Synchronous Radiation of a Living Fossil , 2011, Science.

[67]  John T. Clarke,et al.  Establishing a time-scale for plant evolution. , 2011, The New phytologist.

[68]  Daniel J. G. Lahr,et al.  Estimating the timing of early eukaryotic diversification with multigene molecular clocks , 2011, Proceedings of the National Academy of Sciences.

[69]  Ziheng Yang,et al.  Approximate likelihood calculation on a phylogeny for Bayesian estimation of divergence times. , 2011, Molecular biology and evolution.

[70]  Q. Crowley,et al.  A high-precision U–Pb age constraint on the Rhynie Chert Konservat-Lagerstätte: time scale and other implications , 2011, Journal of the Geological Society.

[71]  Christopher M. Steenbock,et al.  A new family of leafy liverworts from the middle Eocene of Vancouver Island, British Columbia, Canada. , 2011, American journal of botany.

[72]  W. Zang,et al.  Proterozoic phytoplankton and timing of Chlorophyte algae origins , 2011 .

[73]  S. Graham,et al.  Inferring the higher-order phylogeny of mosses (Bryophyta) and relatives using a large, multigene plastid data set. , 2011, American journal of botany.

[74]  Xiao-Ju Yang,et al.  Sinolejeunea yimaensis gen. et sp. nov. (Hepaticae) from the Middle Jurassic Yima Formation in Henan Province of China , 2011 .

[75]  W. H. Lang,et al.  SHOWING STRUCTURE, FROM THE RHYNIE CHERT BED, ABERDEENSHIRE. , 2011 .

[76]  P. Gensel,et al.  Wall ultrastructure in three species of the dispersed spore Emphanisporites from the Early Devonian , 2011 .

[77]  P. Gerrienne,et al.  Aberlemnia caledonica gen. et comb. nov., a new name for Cooksonia caledonica Edwards 1970 , 2010 .

[78]  C. Marshall,et al.  FTIR characterisation of the chemical composition of Silurian miospores (cryptospores and trilete spores) from Gotland, Sweden , 2010 .

[79]  R. Astini,et al.  Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). , 2010, The New phytologist.

[80]  C. Wellman The invasion of the land by plants: when and where? , 2010, The New phytologist.

[81]  Jun Wang Late Paleozoic macrofloral assemblages from Weibei Coalfield, with reference to vegetational change through the Late Paleozoic Ice-age in the North China Block , 2010 .

[82]  U. Heimhofer,et al.  Early Cretaceous angiosperm pollen from a low-latitude succession (Araripe Basin, NE Brazil). , 2010 .

[83]  R. Christopher,et al.  A palynological biozonation for the uppermost Santonian and Campanian Stages (Upper Cretaceous) of South Carolina, USA , 2010 .

[84]  M. Donoghue,et al.  An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants , 2010, Proceedings of the National Academy of Sciences.

[85]  R. Romer,et al.  Pre-Mesozoic Geology of Saxo-Thuringia , 2010 .

[86]  P. Gerrienne,et al.  A New Definition and a Lectotypification of the Genus Cooksonia Lang 1937 , 2010, International Journal of Plant Sciences.

[87]  J. Doyle,et al.  Integrating Early Cretaceous fossils into the phylogeny of living angiosperms: Magnoliidae and eudicots , 2010 .

[88]  S. Egenhoff,et al.  Variscan Early Molasses in the Saxo-Thuringian , 2010 .

[89]  Philip C J Donoghue,et al.  The impact of the representation of fossil calibrations on Bayesian estimation of species divergence times. , 2010, Systematic biology.

[90]  P. Gensel,et al.  Spore wall ultrastructure in the early lycopsid Leclercqia (Protolepidodendrales) from the Lower Devonian of North America: Evidence for a fundamental division in the lycopsids. , 2009, American journal of botany.

[91]  S. Awramik,et al.  Evidence for eukaryotic diversification in the ∼1800 million-year-old Changzhougou Formation, North China , 2009 .

[92]  Yuandong Zhang,et al.  The base of the Middle Ordovician in China with special reference to the succession at Hengtang near Jiangshan, Zhejiang Province, southern China , 2009 .

[93]  A. Biakov,et al.  Permian to earliest Cretaceous climatic oscillations in the eastern Asian continental margin (Sikhote-Alin area), as indicated by fossils and isotope data , 2009 .

[94]  A. Hérissé,et al.  Origin and Radiation of the Earliest Vascular Land Plants , 2009, Science.

[95]  F. Zechman,et al.  A multi-locus time-calibrated phylogeny of the siphonous green algae. , 2009, Molecular phylogenetics and evolution.

[96]  Xiaofeng Wang,et al.  Early and Middle Ordovician chitinozoans from the Dapingian type sections, Yichang area, China , 2009 .

[97]  Xunlai Yuan,et al.  New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation, North China , 2009 .

[98]  P. Strother,et al.  Ultrastructure, morphology, and topology of Cambrian palynomorphs from the Lone Rock Formation, Wisconsin, USA. , 2009 .

[99]  M. Ignatov,et al.  A new fossil moss from the Lower Permian of the Russian Far East , 2009 .

[100]  E. M. Friis,et al.  Early Cretaceous mesofossils from Portugal and eastern North America related to the Bennettitales-Erdtmanithecales-Gnetales group. , 2009, American journal of botany.

[101]  B. Goffinet,et al.  Bryophyte Biology: New insights into morphology, anatomy, and systematics of hornworts , 2008 .

[102]  W. Buck,et al.  Bryophyte Biology: Morphology, anatomy, and classification of the Bryophyta , 2008 .

[103]  P. Strother,et al.  Ultrastructure of some Cambrian palynomorphs from the Bright Angel Shale, Arizona, USA , 2008 .

[104]  E. Landing,et al.  Earth's oldest liverworts—Metzgeriothallus sharonae sp. nov. from the Middle Devonian (Givetian) of eastern New York, USA , 2008 .

[105]  Leo J. Hickey,et al.  Early cretaceous fossil evidence for angiosperm evolution , 2008, The Botanical Review.

[106]  A. Hérissé,et al.  Ordovician chitinozoans and acritarchs from southern and southeastern Turkey , 2007 .

[107]  J. Zalasiewicz,et al.  Integrated Upper Ordovician graptolite–chitinozoan biostratigraphy of the Cardigan and Whitland areas, southwest Wales , 2007, Geological Magazine.

[108]  D. Martill The age of the Cretaceous Santana Formation fossil Konservat Lagerstätte of north-east Brazil: a historical review and an appraisal of the biochronostratigraphic utility of its palaeobiota , 2007 .

[109]  D. Bryant,et al.  A general comparison of relaxed molecular clock models. , 2007, Molecular biology and evolution.

[110]  R. Stockey,et al.  Establishing a fossil record for the perianthless Piperales: Saururus tuckerae sp. nov. (Saururaceae) from the Middle Eocene Princeton Chert. , 2007, American journal of botany.

[111]  M. Donoghue,et al.  Towards a phylogenetic nomenclature of Tracheophyta , 2007 .

[112]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[113]  A. Mcgowan,et al.  THE SHAPE OF THE PHANEROZOIC MARINE PALAEODIVERSITY CURVE: HOW MUCH CAN BE PREDICTED FROM THE SEDIMENTARY ROCK RECORD OF WESTERN EUROPE? , 2007 .

[114]  S. Awramik,et al.  Discoveries of new Longfengshaniaceae from the uppermost Ediacaran in eastern Yunnan, South China and the significance , 2007 .

[115]  W. Yi.,et al.  A new Late Silurian plant with complex branching from Xinjiang, China , 2007 .

[116]  Y. Qiu,et al.  A Nonflowering Land Plant Phylogeny Inferred from Nucleotide Sequences of Seven Chloroplast, Mitochondrial, and Nuclear Genes , 2007, International Journal of Plant Sciences.

[117]  Ziheng Yang,et al.  Inferring speciation times under an episodic molecular clock. , 2007, Systematic biology.

[118]  G. Sun,et al.  An early infructescence Hyrcantha decussata (comb. nov.) from the Yixian Formation in northeastern China , 2007, Proceedings of the National Academy of Sciences.

[119]  C. Brett,et al.  Correlation of Middle Devonian Hamilton Group-equivalent strata in east-central North America: implications for eustasy, tectonics and faunal provinciality , 2007 .

[120]  H. Schneider,et al.  Evolution of leafy liverworts (Jungermanniidae, Marchantiophyta) : estimating divergence times from chloroplast DNA sequences using penalized likelihood with integrated fossil evidence , 2007 .

[121]  D. Batten The Crato Fossil Beds of Brazil: Spores and pollen from the Crato Formation: biostratigraphic and palaeoenvironmental implications , 2007 .

[122]  A. Knoll,et al.  Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen , 2006 .

[123]  Robert A. Berner,et al.  GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2 , 2006 .

[124]  P. Gensel,et al.  Leclercqia complexa from the Early Devonian (Emsian) of northern New Brunswick, Canada , 2006 .

[125]  J. Vinther,et al.  Chaetocladus gracilis n. sp., a non-calcified Dasycladales from the Upper Silurian of Skåne, Sweden , 2006 .

[126]  E. M. Friis,et al.  Liaoxia Cao et S.Q. Wu (Gnetales): ephedroids from the Early Cretaceous Yixian Formation in Liaoning, northeastern China , 2006, Plant Systematics and Evolution.

[127]  Bin Wang,et al.  The deepest divergences in land plants inferred from phylogenomic evidence , 2006, Proceedings of the National Academy of Sciences.

[128]  U. Heimhofer,et al.  Timing of early angiosperm radiation: recalibrating the classical succession , 2006, Journal of the Geological Society.

[129]  E. Dantas,et al.  Shrimp U-Pb zircon dating and palynology of bentonitic layers from the Permian Irati Formation, Paraná Basin, Brazil , 2006 .

[130]  K. Renzaglia,et al.  Sporophyte Structure in the Neotropical Hornwort Phaeomegaceros fimbriatus: Implications for Phylogeny, Taxonomy, and Character Evolution , 2006, International Journal of Plant Sciences.

[131]  D. Stevenson,et al.  Cataphylls of the Middle Triassic cycad Antarcticycas schopfii and new insights into cycad evolution. , 2006, American journal of botany.

[132]  G. Kotlyar,et al.  South Primorye, Far East Russia—A key region for global Permian correlation , 2006 .

[133]  Deming Wang,et al.  A New Lycopsid, Zhenglia radiata gen. et sp. nov., from the Lower Devonian Posongchong Formation of Southeastern Yunnan, China, and Its Evolutionary Significance , 2006 .

[134]  S. Conway Morris Darwin's dilemma: the realities of the Cambrian ‘explosion’ , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[135]  Ziheng Yang,et al.  Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. , 2006, Molecular biology and evolution.

[136]  Cyrille Prestianni Early diversification of seeds and seed-like structures , 2005 .

[137]  J. Frahm,et al.  A New Contribution to the Moss Flora of Dominican Amber , 2005 .

[138]  Shunqing Wu,et al.  Jianshangou Bed of the Yixian Formation in West Liaoning, China , 2005 .

[139]  S. B. Archibald,et al.  Regional and local vegetation community dynamics of the Eocene Okanagan Highlands (British Columbia Washington State) from palynology , 2005 .

[140]  S. Beckert,et al.  A molecular phylogeny of bryophytes based on nucleotide sequences of the mitochondrialnad5 gene , 1999, Plant Systematics and Evolution.

[141]  Xiaofengwang,et al.  A proposed GSSP for the base of the Middle Ordovician Series: the Huanghuachang section,Yichang, China , 2005 .

[142]  E. M. Friis,et al.  On the evolutionary history of Ephedra: Cretaceous fossils and extant molecules. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[143]  B. Mohr,et al.  Endressinia brasiliana, a Magnolialean Angiosperm from the Lower Cretaceous Crato Formation (Brazil) , 2004, International Journal of Plant Sciences.

[144]  S. Feist-Burkhardt,et al.  A boreal early cradle of Angiosperms? Angiosperm-like pollen from the Middle Triassic of the Barents Sea (Norway) , 2004, Journal of Micropalaeontology.

[145]  Qi Wang,et al.  A new species of Estinnophyton from the Lower Devonian Posongchong Formation, Yunnan, China; its phylogenetic and palaeophytogeographical significance , 2004 .

[146]  T. Nishiyama,et al.  Chloroplast phylogeny indicates that bryophytes are monophyletic. , 2004, Molecular biology and evolution.

[147]  R. Olmstead,et al.  A survey of tricolpate (eudicot) phylogenetic relationships. , 2004, American journal of botany.

[148]  G. Shi,et al.  Timing of the Jiufotang Formation (Jehol Group) in Liaoning, northeastern China, and its implications , 2004 .

[149]  Timothy M. Lenton,et al.  COPSE: a new model of biogeochemical cycling over Phanerozoic time , 2004 .

[150]  T. Hedderson,et al.  Phylogenetic relationships of bryophytes inferred from nuclear-encoded rRNA gene sequences , 1996, Plant Systematics and Evolution.

[151]  Ziheng Yang Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods , 1994, Journal of Molecular Evolution.

[152]  P. Strother,et al.  Palaeoecology of the Bright Angel Shale in the eastern Grand Canyon, Arizona, USA, incorporating sedimentological, ichnological and palynological data , 2004, Geological Society, London, Special Publications.

[153]  GaoHui,et al.  Bryophyte-like Fossil (Parafunaria sinensis) from Early-Middle Cambrian Kaili Formation in Guizhou Province, China , 2004 .

[154]  S Blair Hedges,et al.  BMC Evolutionary Biology BioMed Central , 2003 .

[155]  C. Wellman Dating the origin of land plants , 2003 .

[156]  G. Retallack 5.18 – Soils and Global Change in the Carbon Cycle over Geological Time , 2003 .

[157]  C. Wellman,et al.  Fragments of the earliest land plants , 2003, Nature.

[158]  J. Pšenička,et al.  Cuticles and spores of Senftenbergia plumosa (Artis) Bek and Pšenička from the Carboniferous of Pilsen Basin, Bohemian Massif , 2003 .

[159]  T. Scharaschkin,et al.  Phylogenetic analysis of Magnoliales and Myristicaceae based on multiple data sets: implications for character evolution , 2003 .

[160]  M. Sanderson Molecular data from 27 proteins do not support a Precambrian origin of land plants. , 2003, American journal of botany.

[161]  T. Brent,et al.  Geology of eastern Prince of Wales Island and adjacent smaller islands, Nunavut , 2003 .

[162]  Philip C. J. Donoghue,et al.  Telling the evolutionary time: molecular clocks and the fossil record , 2003 .

[163]  M. Gandolfo,et al.  Triuridaceae fossil flowers from the Upper Cretaceous of New Jersey. , 2002, American journal of botany.

[164]  X. Liang The Occurrence of Longfengshania in the Early Cambrian from Haikou, Yunnan, China , 2002 .

[165]  J. Basinger,et al.  Morphologically complex plant macrofossils from the Late Silurian of Arctic Canada. , 2002, American journal of botany.

[166]  A. Knoll,et al.  MACROSCOPIC CARBONACEOUS COMPRESSIONS IN A TERMINAL PROTEROZOIC SHALE: A SYSTEMATIC REASSESSMENT OF THE MIAOHE BIOTA, SOUTH CHINA , 2002, Journal of Paleontology.

[167]  Charles F. Delwiche,et al.  The Closest Living Relatives of Land Plants , 2001, Science.

[168]  S. Westrop The Ecology of the Cambrian Radiation , 2001 .

[169]  J. Pšenička,et al.  Senftenbergia plumosa (Artis) emend. and its spores from the Carboniferous of the Kladno and Pilsen Basins, Bohemian Massif, and some related and synonymous taxa , 2001 .

[170]  S. Hedges,et al.  Molecular Evidence for the Early Colonization of Land by Fungi and Plants , 2001, Science.

[171]  P. Gensel,et al.  Polythecophyton demissum, gen. et sp. nov., a new plant from the Lower Devonian (Pragian) of Yunnan, China and its phytogeographic significance , 2001 .

[172]  E. Ottone,et al.  A new bryophyte from the upper Carboniferous of Argentina , 2001 .

[173]  P. Steemans Miospore evolution from the Ordovician to the Silurian. , 2000, Review of Palaeobotany and Palynology.

[174]  J. Palmer,et al.  Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants. , 2000, Molecular biology and evolution.

[175]  B. Crandall-Stotler,et al.  Morphology and classification of the Marchantiophyta , 2000 .

[176]  M. Hill The Liverwort Flora of the British Isles , 2000 .

[177]  J. Gray,et al.  The microfossil record of early land plants. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[178]  D. Garbary,et al.  Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[179]  R. B. Rickards The age of the earliest club mosses: the Silurian Baragwanathia flora in Victoria, Australia , 2000, Geological Magazine.

[180]  T. Nishiyama,et al.  Molecular phylogenetic analysis among bryophytes and tracheophytes based on combined data of plastid coded genes and the 18S rRNA gene. , 1999, Molecular biology and evolution.

[181]  Richard C. E. Anderson Guide to the geology of the Rock Island-Milan Area, Rock Island County, Illinois , 1999 .

[182]  H. Kishino,et al.  Estimating the rate of evolution of the rate of molecular evolution. , 1998, Molecular biology and evolution.

[183]  Gunn Mangerud,et al.  Biostratigraphy and sequence stratigraphy of the lower and middle Triassic deposits from the Svalis Dome, Central Barents Sea, Norway , 1998 .

[184]  J. W. Bates Bryology for the Twenty-first Century , 1998 .

[185]  Yangrae Cho,et al.  The gain of three mitochondrial introns identifies liverworts as the earliest land plants , 1998, Nature.

[186]  K. Nixon,et al.  Fossil Clusiaceae from the late Cretaceous (Turonian) of New Jersey and implications regarding the history of bee pollination. , 1998, American journal of botany.

[187]  D. Edwards,et al.  Permanent dyads in sporangia and spore masses from the Lower Devonian of the Welsh Borderland , 1998 .

[188]  T. Taylor,et al.  Anatomically preserved leaves of the conifer Notophytum krauselii (Podocarpaceae) from the Triassic of Antarctica. , 1998, American journal of botany.

[189]  P. Herendeen,et al.  Sporophytes and gametophytes of Dicranaceae from the Santonian (Late Cretaceous) of Georgia, USA. , 1998, American journal of botany.

[190]  Thomas J. Algeo,et al.  Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events , 1998 .

[191]  P. Gensel,et al.  Some new plant finds from the Posongchong Formation of Yunnan, and consideration of a phytogeographic similarity between South China and Australia during the Early Devonian , 1998 .

[192]  H. Anderson,et al.  Late Triassic ecosystems of the Molteno/Lower Elliot biome of southern Africa , 1998 .

[193]  K. Renzaglia,et al.  Anatomy and ultrastructure of the sporophyte of Takakia ceratophylla (Bryophyta). , 1997, American journal of botany.

[194]  W. Taylor Ultrastructure of lower Paleozoic dyads from southern Ohio II: Dyadospora murusattenuata, functional and evolutionary considerations , 1997 .

[195]  P. Herendeen,et al.  Sporophytes and Gametophytes of Polytrichaceae from the Campanian (Late Cretaceous) of Georgia, U. S. A. , 1997, International Journal of Plant Sciences.

[196]  B. Mishler,et al.  Phylogenetic relationships of the liverworts (Hepaticae), a basal embryophyte lineage, inferred from nucleotide sequence data of the chloroplast gene rbcL. , 1997, Molecular phylogenetics and evolution.

[197]  Robert A. Berner,et al.  The Rise of Plants and Their Effect on Weathering and Atmospheric CO2 , 1997, Science.

[198]  E. Taylor,et al.  A taxodiaceous seed cone from the Triassic of Antarctica. , 1997, American journal of botany.

[199]  A. Brennicke,et al.  RNA editing in bryophytes and a molecular phylogeny of land plants. , 1996, The EMBO journal.

[200]  D. Edwards,et al.  Coprolites as evidence for plant–animal interaction in Siluro–Devonian terrestrial ecosystems , 1995, Nature.

[201]  D. Edwards,et al.  A re-investigation of Halle's Drepanophycus spinaeformis Göpp. from the Lower Devonian of Yunnan Province, southern China , 1995 .

[202]  W. Taylor Ultrastructure of Tetrahedraletes medinensis (Strother and Traverse) Wellman and Richardson, from the Upper Ordovician of southern Ohio , 1995 .

[203]  R. Berner,et al.  GEOCARB III : A REVISED MODEL OF ATMOSPHERIC CO 2 OVER PHANEROZOIC TIME , 2001 .

[204]  N. Hughes,et al.  Jurassic and Cretaceous floras and climates of the Earth , 1994 .

[205]  C. Delwiche,et al.  Phylogenetic Relationships of the "Green Algae" and "Bryophytes" , 1994 .

[206]  N. Hughes The enigma of angiosperm origins , 1994 .

[207]  G. Gohn,et al.  Stratigraphic framework for geologic and geohydrologic studies of the subsurface Cretaceous section near Charleston, South Carolina , 1994 .

[208]  P. Gerrienne The Emsian plants from Fooz-Wépion (Belgium). III. Foozia minuta gen. et spec. nov., a new taxon with probable cladoxylalean affinities , 1992 .

[209]  L. Axe,et al.  A vascular conducting strand in the early land plant Cooksonia , 1992, Nature.

[210]  M. Trivett Growth Architecture, Structure, and Relationships of Cordaixylon iowensis Nov. comb. (Cordaitales) , 1992, International Journal of Plant Sciences.

[211]  M. Buchheim,et al.  PRELIMINARY INFERENCES OF THE PHYLOGENY OF BRYOPHYTES FROM NUCLEAR‐ENCODED RIBOSOMAL RNA SEQUENCES , 1992 .

[212]  B. Mishler,et al.  A molecular approach to the phylogeny of bryophytes : cladistic analysis of chloroplast-encoded 16S and 23S ribosomal RNA genes , 1992 .

[213]  D. Edwards,et al.  The development of early terrestrial ecosystems , 1992 .

[214]  R. Riding Cambrian Calcareous Cyanobacteria and Algae , 1991 .

[215]  F. Paris The Ordovician chitinozoan biozones of the Northern Gondwana Domain , 1990 .

[216]  N. Hughes,et al.  Barremian-Aptian angiospermid pollen records from southern England , 1990 .

[217]  M. Streel,et al.  Miospore lateral distribution in upper Famennian alluvial lagoonal to tidal facies from eastern United States and Belgium , 1990 .

[218]  T. Uyeno Biostratigraphy and conodont faunas of upper ordovician through middle devonian rocks, eastern Arctic Archipelago , 1990 .

[219]  J. Miller,et al.  Dinoflagellate species and organic facies evidence of marine transgression and regression in the atlantic coastal plain , 1989 .

[220]  B. A. Thomas,et al.  A review of fossil cycad megasporophylls, with new evidence of Crossozamia pomel and its associated leaves from the lower permian of Taiyuan, China , 1989 .

[221]  W. Gillespie,et al.  Elkinsia gen. nov., a Late Devonian Gymnosperm with Cupulate Ovules , 1989, Botanical Gazette.

[222]  E. Brown A revision of the genus Riccardia S.F.Gray in New Zealand with notes on the genus Aneura Dum , 1989 .

[223]  G. Rothwell,et al.  FOSSIL OPHIOGLOSSALES IN THE PALEOCENE OF WESTERN NORTH AMERICA , 1989 .

[224]  P. Hochuli,et al.  Triassic biostratigraphy of the Barents Sea area , 1989 .

[225]  J. Janssens,et al.  On diettertia an isolated mesozoic member of the jungermanniales , 1989 .

[226]  W. Riegel,et al.  Spore stratigraphy and correlation with faunas and floras in the type marine devonian of the Ardenne-Rhenish regions , 1987 .

[227]  M. Dettmann,et al.  Cretaceous palynomorphs from the James Ross Island area, Antarctica. A pilot study , 1987 .

[228]  Zhang Zhongying Clastic facies microfossils from the Chuanlinggou Formation (1800 Ma) near Jixian, North China , 1986, Journal of Micropalaeontology.

[229]  J. B. Richardson,et al.  Stomata and sterome in early land plants , 1986, Nature.

[230]  V. Krassilov,et al.  New floral structure from the Lower Cretaceous of Lake Baikal area , 1986 .

[231]  A. Drinnan,et al.  Flora of the Lower Cretaceous Koonwarra Fossil Bed ( Korumburra Group), South Gippsland, Victoria ( Australia). , 1986 .

[232]  J. B. Richardson,et al.  Silurian and Devonian spore zones of the Old Red Sandstone Continent and adjacent regions , 1986 .

[233]  J. G. Johnson,et al.  Devonian eustatic fluctuations in Euramerica , 1985 .

[234]  J. Gray The microfossil record of early land plants: advances in understanding of early terrestrialization, 1970-1984 , 1985 .

[235]  H. Hofmann The mid-Proterozoic Little Dal macrobiota, Mackenzie Mountains, north-west Canada , 1985 .

[236]  S. Churchill,et al.  A cladistic approach to the phylogeny of the “Bryophytes” , 1984 .

[237]  B. Lemmon,et al.  Spore wall development in Andreaea (Musci : Andreaeopsida) , 1984 .

[238]  D. Edwards,et al.  A late Wenlock flora from Co. Tipperary, Ireland , 1983 .

[239]  B. Lemmon,et al.  Spore wall ultrastructure of Sphagnum lescurii sull , 1982 .

[240]  J. Feehan,et al.  Records of Cooksonia-type sporangia from late Wenlock strata in Ireland , 1980, Nature.

[241]  T. Uyeno,et al.  Stratigraphy and conodonts of Upper Silurian and Lower Devonian rocks in the environs of the Boothia Uplift, Canadian Arctic Archipelago , 1980 .

[242]  J. Gray,et al.  The advent of land plant life , 1978 .

[243]  M. J. Garratt,et al.  New evidence for a Silurian (Ludlow) age for the earliest Baragwanathia flora , 1978 .

[244]  P. M. Bonamo RELLIMIA THOMSONII (PROGYMNOSPERMOPSIDA) FROM THE MIDDLE DEVONIAN OF NEW YORK STATE , 1977 .

[245]  W. DiMichele,et al.  Monocyclic Psaronius from the lower Pennsylvanian of the Illinois Basin , 1977 .

[246]  G. Clayton,et al.  Carboniferous miospores of Western Europe: illustration and zonation. , 1977 .

[247]  H. Anderson A review of the Bryophyta from the Upper Triassic Molteno Formation, Karroo Basin, South Africa , 1976 .

[248]  R. Stockey SEEDS AND EMBRYOS OF ARAUCARIA MIRABILIS , 1975 .

[249]  H. P. Banks RECLASSIFICATION OF PSILOPHYTA , 1975 .

[250]  C. Robison,et al.  Diettertia montanensis, gen. et Sp. Nov., a Fossil Moss from the Lower Cretaceous Kootenai Formation of Montana , 1974, Botanical Gazette.

[251]  M. Murphy,et al.  Silurian-Lower Devonian conodont sequence in the Roberts Mountains Formation of central Nevada , 1974 .

[252]  H. P. Banks,et al.  IBYKA AMPHIKOMA, GEN. ET SP. N., A NEW PROTOARTICULATE PRECURSOR FROM THE LATE MIDDLE DEVONIAN OF NEW YORK STATE , 1973 .

[253]  F. Nemejc,et al.  Hepaticae in the senonian of South Bohemia , 1972, Journal of Palaeosciences.

[254]  B. A. Thomas,et al.  A Probable Moss from the Lower Carboniferous of the Forest of Dean, Gloucestershire , 1972 .

[255]  D. Edwards Fertile rhyniophytina from the Lower Devonian of Britain , 1970 .

[256]  E. W. Jones The Hepaticae and Anthocerotae of North America East of the Hundredth Meridian , 1968 .

[257]  H. Baadsgaard,et al.  Potassium-Argon Dating of Some Lower Tertiary Strata in British Columbia , 1967 .

[258]  Denys B. Smith The Permian period , 2019, Geological Society, London, Special Publications.

[259]  I. Strachan The Silurian period , 1964, Geological Society, London, Special Publications.

[260]  W. H. Mathews POTASSIUM-ARGON AGE DETERMINATIONS OF CENOZOIC VOLCANIC ROCKS FROM BRITISH COLUMBIA , 1964 .

[261]  A. W. Woodland,et al.  The Carboniferous period , 1964, Geological Society, London, Special Publications.

[262]  J. Cowie The Cambrian period , 1964, Geological Society, London, Special Publications.

[263]  H. B. Whittington,et al.  The Ordovician period , 1964, Geological Society, London, Special Publications.

[264]  L. R. Wager Correlation of the Devonian rocks in New York State , 1964 .

[265]  W. H. Mathews,et al.  Radioactive Dating of Tertiary Plant-Bearing Deposits , 1961, Science.

[266]  M. Calder A Coniferous Petrified Forest in Patagonia , 1953, Nature.

[267]  Rudolf Florin Evolution in cordaites and conifers , 1951 .

[268]  M. H. Wilde,et al.  The Ovule and ‘Seed’ of Araucaria Bidwillii with Discussion of the Taxonomy of the Genus , 1948 .

[269]  T. M. Harris The British Rhaetic flora , 1938 .

[270]  W. H. Lang,et al.  On a Flora, Including Vascular Land Plants, Associated with Monograptus, in Rocks of Silurian Age, from Victoria, Australia , 1935 .

[271]  G. Wieland The Cerro Cuadrado petrified forest , 1935 .

[272]  J. Walton Carboniferous BryophytaII. Hepaticae and Musci , 1928 .

[273]  W. H. Lang,et al.  XXVI.—On Old Red Sandstone Plants showing Structure, from the Rhynie Chert Bed, Aberdeenshire. Part III. Asteroxylon Mackiei, Kidston and Lang , 1920, Transactions of the Royal Society of Edinburgh.

[274]  T. Hughes The Cretaceous Period , 1871, Nature.

[275]  P. Brodie A History of the Fossil Insects in the Secondary rocks of England, accompanied by a particular account of the Strata in which they occur, and of the circumstances connected with their preservation , 1845, Quarterly Journal of the Geological Society of London.