Real no-boundary wave function in Lorentzian quantum cosmology

It is shown that the standard no-boundary wave function has a natural expression in terms of a Lorentzian path integral with its contour defined by Picard-Lefschetz theory. The wave function is real, satisfies the Wheeler-DeWitt equation and predicts an ensemble of asymptotically classical, inflationary universes with nearly-Gaussian fluctuations and with a smooth semiclassical origin.

[1]  N. Turok,et al.  No Smooth Beginning for Spacetime. , 2017, Physical review letters.

[2]  N. Turok,et al.  Lorentzian quantum cosmology , 2017, 1703.02076.

[3]  M. Serone,et al.  The power of perturbation theory , 2017, Journal of High Energy Physics.

[4]  T. Hertog,et al.  Quantum transitions through cosmological singularities , 2017, 1701.05399.

[5]  T. Hertog,et al.  Holographic tunneling wave function , 2015, 1506.07374.

[6]  J. Hartle,et al.  Quantum transitions between classical histories , 2015, 1502.06770.

[7]  T. Koike,et al.  Real-time Feynman path integral with Picard–Lefschetz theory and its applications to quantum tunneling , 2014, 1406.2386.

[8]  J. Hartle,et al.  Quantum probabilities for inflation from holography , 2012, 1207.6653.

[9]  F. Denef,et al.  Wave function of Vasiliev's universe: A few slices thereof , 2012, 1207.5517.

[10]  J. Hartle,et al.  Holographic no-boundary measure , 2011, 1111.6090.

[11]  J. Hartle,et al.  Arrows of Time in the Bouncing Universes of the No-boundary Quantum State , 2011, 1104.1733.

[12]  E. Witten Analytic Continuation Of Chern-Simons Theory , 2010, 1001.2933.

[13]  J. Hartle,et al.  No-boundary measure in the regime of eternal inflation , 2010, 1001.0262.

[14]  Paul L. McFadden,et al.  Holography for Cosmology , 2009, 0907.5542.

[15]  J.J.Halliwell Probabilities in Quantum Cosmological Models: A Decoherent Histories Analysis Using a Complex Potential , 2009, 0909.2597.

[16]  J. Hartle,et al.  Classical universes of the no-boundary quantum state , 2008, 0803.1663.

[17]  J. Hartle,et al.  No-boundary measure of the universe. , 2007, Physical review letters.

[18]  J. Maldacena Non-Gaussian features of primordial fluctuations in single field inflationary models , 2002, astro-ph/0210603.

[19]  F. Embacher Hand-waving Refined Algebraic Quantization , 1997, gr-qc/9708016.

[20]  Laflamme,et al.  Origin of time asymmetry. , 1993, Physical review. D, Particles and fields.

[21]  Halliwell,et al.  Path-integral quantum cosmology: A class of exactly soluble scalar-field minisuperspace models with exponential potentials. , 1991, Physical review. D, Particles and fields.

[22]  J. Hartle,et al.  Wave functions constructed from an invariant sum over histories satisfy constraints. , 1991, Physical review. D, Particles and fields.

[23]  Brown,et al.  Lorentzian path integral for minisuperspace cosmology. , 1990, Physical review. D, Particles and fields.

[24]  J. Hartle,et al.  Integration contours for the no-boundary wave function of the universe. , 1990, Physical review. D, Particles and fields.

[25]  Halliwell,et al.  Steepest-descent contours in the path-integral approach to quantum cosmology. III. A general method with applications to anisotropic minisuperspace models. , 1990, Physical review. D, Particles and fields.

[26]  J. Louko,et al.  Steepest-descent contours in the path-integral approach to quantum cosmology. I. The de Sitter minisuperspace model. , 1989, Physical review. D, Particles and fields.

[27]  Halliwell,et al.  Derivation of the Wheeler-DeWitt equation from a path integral for minisuperspace models. , 1988, Physical review. D, Particles and fields.

[28]  P. González-Díaz On the wave function of the universe , 1985 .

[29]  Halliwell,et al.  Origin of structure in the Universe. , 1985, Physical review. D, Particles and fields.

[30]  S. Hawking The Quantum State of the Universe , 1984 .

[31]  C. Teitelboim Quantum mechanics of the gravitational field in asymptotically flat space , 1983 .

[32]  C. Teitelboim Causality Versus Gauge Invariance in Quantum Gravity and Supergravity , 1983 .

[33]  C. Teitelboim Quantum mechanics of the gravitational field , 1982 .