Stable Camera Motion Estimation Using Convex Programming

We study the inverse problem of estimating $n$ locations $\mathbf{t}_1, \mathbf{t}_2, \ldots, \mathbf{t}_n$ (up to global scale, translation, and negation) in $\mathbb{R}^d$ from noisy measurements of a subset of the (unsigned) pairwise lines that connect them, that is, from noisy measurements of $\pm \frac{\mathbf{t}_i - \mathbf{t}_j}{\|\mathbf{t}_i - \mathbf{t}_j \|_2}$ for some pairs $(i,j)$ (where the signs are unknown). This problem is at the core of the structure from motion (SfM) problem in computer vision, where the $\mathbf{t}_i$ represent camera locations in $\mathbb{R}^3$. The noiseless version of the problem, with exact line measurements, has been considered previously under the general title of parallel rigidity theory, mainly in order to characterize the conditions for unique realization of locations. For noisy pairwise line measurements, current methods tend to produce spurious solutions that are clustered around a few locations. This sensitivity of the location estimates is a well-known pr...

[1]  Richard I. Hartley,et al.  Multiple-View Geometry Under the {$L_\infty$}-Norm , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Yaron Lipman,et al.  Sensor network localization by eigenvector synchronization over the euclidean group , 2012, TOSN.

[3]  Brian D. O. Anderson,et al.  A Theory of Network Localization , 2006, IEEE Transactions on Mobile Computing.

[4]  Tomás Pajdla,et al.  Robust Rotation and Translation Estimation in Multiview Reconstruction , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Bruce Hendrickson,et al.  The Molecule Problem: Exploiting Structure in Global Optimization , 1995, SIAM J. Optim..

[6]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[7]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[8]  Anthony Man-Cho So,et al.  Theory of semidefinite programming for Sensor Network Localization , 2005, SODA '05.

[9]  Joel A. Tropp,et al.  Robust computation of linear models, or How to find a needle in a haystack , 2012, ArXiv.

[10]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[11]  B. Hendrickson,et al.  Regular ArticleAn Algorithm for Two-Dimensional Rigidity Percolation: The Pebble Game , 1997 .

[12]  Andrew Owens,et al.  Discrete-continuous optimization for large-scale structure from motion , 2011, CVPR.

[13]  Zhengyou Zhang,et al.  Incremental Motion Estimation Through Local Bundle Adjustment , 2001 .

[14]  Richard Szeliski,et al.  Building Rome in a day , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[15]  Constantine Caramanis,et al.  Robust PCA via Outlier Pursuit , 2010, IEEE Transactions on Information Theory.

[16]  Amit Singer,et al.  Global Registration of Multiple Point Clouds Using Semidefinite Programming , 2013, SIAM J. Optim..

[17]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[18]  R. Hartley,et al.  Multiple-View Geometry under the L 1-Norm , 2007 .

[19]  Kim-Chuan Toh,et al.  Semidefinite Programming Approaches for Sensor Network Localization With Noisy Distance Measurements , 2006, IEEE Transactions on Automation Science and Engineering.

[20]  Walter Whiteley,et al.  A matroid on hypergraphs, with applications in scene analysis and geometry , 1989, Discret. Comput. Geom..

[21]  Camillo J. Taylor,et al.  Network localization from relative bearing measurements , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Hongyuan Zha,et al.  Spectral Properties of the Alignment Matrices in Manifold Learning , 2009, SIAM Rev..

[23]  Bruce Hendrickson,et al.  Conditions for Unique Graph Realizations , 1992, SIAM J. Comput..

[24]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[25]  Amit Singer,et al.  Open Problem: Tightness of maximum likelihood semidefinite relaxations , 2014, COLT.

[26]  Ami Wiesel,et al.  Semidefinite relaxation for detection of 16-QAM signaling in MIMO channels , 2005, IEEE Signal Processing Letters.

[27]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[28]  Amit Singer,et al.  Exact and Stable Recovery of Rotations for Robust Synchronization , 2012, ArXiv.

[29]  I. J. Schoenberg Metric spaces and completely monotone functions , 1938 .

[30]  Venu Madhav Govindu,et al.  Combining two-view constraints for motion estimation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[31]  Bastian Katz,et al.  Maximum Rigid Components as Means for Direction-Based Localization in Sensor Networks , 2007, SOFSEM.

[32]  René Vidal,et al.  Distributed image-based 3-D localization of camera sensor networks , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[33]  T. Eren,et al.  Using Angle of Arrival (Bearing) Information in Network Localization , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[34]  B. Anderson,et al.  Sensor and network topologies of formations with direction, bearing, and angle information between agents , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[35]  Jochen Trumpf,et al.  L1 rotation averaging using the Weiszfeld algorithm , 2011, CVPR 2011.

[36]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[37]  Ligang Liu,et al.  On affine rigidity , 2010, J. Comput. Geom..

[38]  Yinyu Ye,et al.  Semidefinite programming based algorithms for sensor network localization , 2006, TOSN.

[39]  Seth J. Teller,et al.  Spectral Solution of Large-Scale Extrinsic Camera Calibration as a Graph Embedding Problem , 2004, ECCV.

[40]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[41]  Venu Madhav Govindu,et al.  Lie-algebraic averaging for globally consistent motion estimation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[42]  Jean Ponce,et al.  Accurate, Dense, and Robust Multiview Stereopsis , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Ira Kemelmacher-Shlizerman,et al.  Global Motion Estimation from Point Matches , 2012, 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission.

[44]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[45]  Baris Fidan,et al.  Localization Algorithms and Strategies for Wireless Sensor Networks: Monitoring and Surveillance Techniques for Target Tracking , 2009 .

[46]  Hongdong Li,et al.  Multi-view structure computation without explicitly estimating motion , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[47]  Zhi-Quan Luo,et al.  Semidefinite Relaxation of Quadratic Optimization Problems , 2010, IEEE Signal Processing Magazine.

[48]  Steven M. Seitz,et al.  Multicore bundle adjustment , 2011, CVPR 2011.

[49]  G. Laman On graphs and rigidity of plane skeletal structures , 1970 .

[50]  Gábor Pataki,et al.  On the Rank of Extreme Matrices in Semidefinite Programs and the Multiplicity of Optimal Eigenvalues , 1998, Math. Oper. Res..

[51]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[52]  Michal Havlena,et al.  Randomized structure from motion based on atomic 3D models from camera triplets , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[54]  Joel A. Tropp,et al.  Robust Computation of Linear Models by Convex Relaxation , 2012, Foundations of Computational Mathematics.

[55]  Anders P. Eriksson,et al.  Efficient optimization for L∞-problems using pseudoconvexity , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[56]  Richard Szeliski,et al.  A Multi-stage Linear Approach to Structure from Motion , 2010, ECCV Workshops.

[57]  Richard Szeliski,et al.  Towards Internet-scale multi-view stereo , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[58]  Pascal Fua,et al.  On benchmarking camera calibration and multi-view stereo for high resolution imagery , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[59]  David E. Tyler A Distribution-Free $M$-Estimator of Multivariate Scatter , 1987 .

[60]  Bill Jackson,et al.  Graph theoretic techniques in the analysis of uniquely localizable sensor networks , 2009 .

[61]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[62]  Walter Whiteley,et al.  Constraining Plane Configurations in Computer-Aided Design: Combinatorics of Directions and Lengths , 1999, SIAM J. Discret. Math..

[63]  Archana Bharathidasan,et al.  Sensor Networks : An Overview , 2002 .

[64]  Amir K. Khandani,et al.  A near maximum likelihood decoding algorithm for MIMO systems based on semi-definite programming , 2005, ISIT.

[65]  Camillo J. Taylor,et al.  Identifying maximal rigid components in bearing-based localization , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[66]  Amir K. Khandani,et al.  A Near-Maximum-Likelihood Decoding Algorithm for MIMO Systems Based on Semi-Definite Programming , 2007, IEEE Transactions on Information Theory.

[67]  Wotao Yin,et al.  Alternating direction augmented Lagrangian methods for semidefinite programming , 2010, Math. Program. Comput..

[68]  Onur Özyesil,et al.  Robust camera location estimation by convex programming , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[69]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[70]  Kim-Chuan Toh,et al.  An SDP-Based Divide-and-Conquer Algorithm for Large-Scale Noisy Anchor-Free Graph Realization , 2009, SIAM J. Sci. Comput..

[71]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[72]  Richard Szeliski,et al.  Skeletal graphs for efficient structure from motion , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[73]  B. Hendrickson,et al.  An Algorithm for Two-Dimensional Rigidity Percolation , 1997 .

[74]  Richard I. Hartley,et al.  Recovering Camera Motion Using L\infty Minimization , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[75]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[76]  Bingsheng He,et al.  On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..