Computational system identification for Bayesian NARMAX modelling

In this contribution we derive a computational Bayesian approach to NARMAX model identification. The identification algorithm exploits continuing advances in computational processing power to numerically obtain posterior distributions for both model structure and parameters via sampling methods. The main advantage of this approach over other NARMAX identification algorithms is that for the first time model uncertainty is characterised as a byproduct of the identification procedure. The algorithm is based on the reversible jump Markov chain Monte Carlo (RJMCMC) procedure. Key features of the approach are (i) sampling of unselected model terms for testing for inclusion in the model (the birth move), which encourages global searching of the model term space, (ii) sampling of previously selected model terms for testing for exclusion from the model-a naturally incorporated pruning step (the death move), which leads to model parsimony, and (iii) estimation of model and parameter distributions, which are naturally generated in the Bayesian framework. We present a numerical example to demonstrate the algorithm and a comparison with a forward regression method: the results show that the RJMCMC approach is competitive and gives useful additional information regarding uncertainty in both model parameters and structure.

[1]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[2]  Robert E. Kearney,et al.  NARMAX representation and identification of ankle dynamics , 2003, IEEE Transactions on Biomedical Engineering.

[3]  Abdol S. Soofi,et al.  Modelling and forecasting financial data : techniques of nonlinear dynamics , 2002 .

[4]  J. Besag A candidate's formula: A curious result in Bayesian prediction , 1989 .

[5]  V. Kadirkamanathan,et al.  Modelling and identification of non-linear deterministic systems in the delta-domain , 2007, Autom..

[6]  Sean R. Anderson,et al.  Structure detection and parameter estimation for NARX models in a unified EM framework , 2012, Autom..

[7]  S. Billings,et al.  Algorithms for minimal model structure detection in nonlinear dynamic system identification , 1997 .

[8]  Kang Li,et al.  A two-stage algorithm for identification of nonlinear dynamic systems , 2006, Autom..

[9]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[10]  David Hastie,et al.  Towards Automatic Reversible Jump Markov Chain Monte Carlo , 2005 .

[11]  Daniel Coca,et al.  A DIRECT APPROACH TO IDENTIFICATION OF NONLINEAR DIFFERENTIAL MODELS FROM DISCRETE DATA , 1999 .

[12]  Sean R. Anderson,et al.  Nonlinear Dynamic Modeling of Isometric Force Production in Primate Eye Muscle , 2010, IEEE Transactions on Biomedical Engineering.

[13]  David Rees,et al.  Nonlinear gas turbine modeling using NARMAX structures , 2001, IEEE Trans. Instrum. Meas..

[14]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[15]  L. Piroddi,et al.  An identification algorithm for polynomial NARX models based on simulation error minimization , 2003 .

[16]  R. Bhushan Gopaluni,et al.  Nonlinear system identification under missing observations: The case of unknown model structure , 2010 .

[17]  Rosalind W. Picard,et al.  On the efficiency of the orthogonal least squares training method for radial basis function networks , 1996, IEEE Trans. Neural Networks.

[18]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[19]  K. Worden,et al.  Past, present and future of nonlinear system identification in structural dynamics , 2006 .

[20]  Kwang-Joon Kim,et al.  IDENTIFICATION OF LOUDSPEAKER NONLINEARITIES USING THE NARMAX MODELING TECHNIQUE , 1994 .

[21]  Václav Peterka,et al.  Bayesian system identification , 1979, Autom..

[22]  Er-Wei Bai,et al.  A TWO-STAGE ALGORITHM FOR IDENTIFICATION OF NONLINEAR DYNAMIC SYSTEMS , 2006 .

[23]  Laura Giarré,et al.  NARX models of an industrial power plant gas turbine , 2005, IEEE Transactions on Control Systems Technology.

[24]  Visakan Kadirkamanathan,et al.  A data-driven framework for identifying nonlinear dynamic models of genetic parts. , 2012, ACS synthetic biology.

[25]  Sheng Chen,et al.  Representations of non-linear systems: the NARMAX model , 1989 .

[26]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[27]  R. Ehlers Bayesian Analysis of Order Uncertainty in ARIMA Models , 2006 .

[28]  Simon J. Godsill,et al.  Bayesian model selection for time series using Markov chain Monte Carlo , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[29]  Visakan Kadirkamanathan,et al.  Fault detection and isolation in non-linear stochastic systems—A combined adaptive Monte Carlo filtering and likelihood ratio approach , 2004 .

[30]  Brett Ninness,et al.  Bayesian system identification via Markov chain Monte Carlo techniques , 2010, Autom..

[31]  Heinz Unbehauen,et al.  Structure identification of nonlinear dynamic systems - A survey on input/output approaches , 1990, Autom..

[32]  A. Doucet,et al.  Reversible Jump Markov Chain Monte Carlo Strategies for Bayesian Model Selection in Autoregressive Processes , 2004, Journal of Time Series Analysis.

[33]  Simon J. Godsill,et al.  A reversible jump sampler for autoregressive time series , 1997, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[34]  R. Kearney,et al.  A bootstrap method for structure detection of NARMAX models , 2004 .

[35]  Thomas B. Schön,et al.  System identification of nonlinear state-space models , 2011, Autom..

[36]  Jerry Nedelman,et al.  Book review: “Bayesian Data Analysis,” Second Edition by A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin Chapman & Hall/CRC, 2004 , 2005, Comput. Stat..

[37]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[38]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[39]  Gomes de Freitas,et al.  Bayesian methods for neural networks , 2000 .

[40]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .

[41]  Christophe Andrieu,et al.  Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC , 1999, IEEE Trans. Signal Process..

[42]  Sheng Chen,et al.  Identification of MIMO non-linear systems using a forward-regression orthogonal estimator , 1989 .

[43]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .