Analyzing the time spectrum of supernova neutrinos to constrain their effective mass or Lorentz Invariance Violation

We analyze the expected arrival time spectrum of supernova neutrinos using simulated luminosity and compute the expected number of events in future detectors such as the DUNE Far Detector and Hyper-Kamiokande. We develop a general method using minimum square statistics that can compute the sensitivity to any variable affecting neutrino time of flight. We apply this method in two different situations: First, we compare the time spectrum changes due to different neutrino mass values to put limits on electron (anti)neutrino effective mass. Second, we constrain Lorentz invariance violation through the mass scale, $M_{QG}$, at which it would occur. We consider two main neutrino detection techniques: 1. DUNE-like liquid argon TPC, for which the main detection channel is $\nu_e +\, ^{40}\mbox{Ar} \rightarrow e^- +\, ^{40}\mbox{K}^*$, related to the supernova neutronization burst; and 2. HyperK-like water Cherenkov detector, for which $\bar \nu_e + p \rightarrow e^+ + n$ is the main detection channel. We consider a fixed supernova distance of 10~kpc and two different masses of the progenitor star: (i) 15~$M_\odot$ with neutrino emission time up to 0.3~s and (ii) 11.2~$M_\odot$ with neutrino emission time up to 10~s. The best mass limits at 3$\sigma$ are for $\mathcal{O}(1)$~eV. For $\nu_e$, the best limit comes from a DUNE-like detector if the mass ordering happens to be inverted. For $\bar \nu_e$, the best limit comes from a HyperK-like detector. The best limit for the Lorentz invariance violation mass scale at the 3$\sigma$ level considering a superluminal or subluminal effect is $M_{QG} \gtrsim 10^{13}$~GeV ($M_{QG} \gtrsim 5 \times 10^{5}$~GeV) for linear (quadratic) energy dependence.

[1]  P. T. Surukuchi,et al.  Tritium Beta Spectrum and Neutrino Mass Limit from Cyclotron Radiation Emission Spectroscopy , 2022, 2212.05048.

[2]  A. Balantekin,et al.  Exploiting stellar explosion induced by the QCD phase transition in large-scale neutrino detectors , 2022, Physical Review D.

[3]  O. Mena,et al.  Absolute ν Mass Measurement with the DUNE Experiment. , 2022, Physical review letters.

[4]  Y. Qian,et al.  Prospects for distinguishing supernova models using a future neutrino signal , 2022, Physical Review D.

[5]  The Katrin Collaboration Direct neutrino-mass measurement with sub-electronvolt sensitivity , 2022 .

[6]  T. Schwetz,et al.  NuFIT: Three-Flavour Global Analyses of Neutrino Oscillation Experiments , 2021, Universe.

[7]  O. Mena,et al.  Most constraining cosmological neutrino mass bounds , 2021, Physical Review D.

[8]  Vito Antonelli,et al.  Phenomenological Effects of CPT and Lorentz Invariance Violation in Particle and Astroparticle Physics , 2020, Symmetry.

[9]  J. I. Crespo-Anadón,et al.  SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy , 2020, New Journal of Physics.

[10]  J. I. Crespo-Anad'on,et al.  Supernova Neutrino Burst Detection with the Deep Underground Neutrino Experiment , 2020, 2008.06647.

[11]  M. C. de Oliveira,et al.  Theory of neutrino detection: flavor oscillations and weak values , 2020, The European Physical Journal C.

[12]  V. P. Luzio,et al.  Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics , 2020, 2002.03005.

[13]  V. P. Luzio,et al.  Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume IV Far Detector Single-phase Technology , 2020, 2002.03010.

[14]  V. P. Luzio,et al.  Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I: Introduction to DUNE , 2020, 2002.02967.

[15]  A. K. Soma,et al.  Search for Neutrinoless Double-β Decay with the Complete EXO-200 Dataset. , 2019, Physical review letters.

[16]  M. Lindner,et al.  Timing the neutrino signal of a Galactic supernova , 2019, Physical Review D.

[17]  S. Blinnikov,et al.  Quark deconfinement as a supernova explosion engine for massive blue supergiant stars , 2017, Nature Astronomy.

[18]  K. Scholberg Supernova signatures of neutrino mass ordering , 2017, 1707.06384.

[19]  H. Janka Neutrino Emission from Supernovae , 2017, 1702.08713.

[20]  H. Janka Neutrino-Driven Explosions , 2017, 1702.08825.

[21]  M. Decowski,et al.  Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen. , 2016, Physical review letters.

[22]  H. Janka,et al.  Supernova Neutrinos: Production, Oscillations and Detection , 2015, 1508.00785.

[23]  E. Kemp,et al.  Boundaries on Neutrino Mass from Supernovae Neutronization Burst by Liquid Argon Experiments , 2015, 1501.00456.

[24]  Shun Zhou,et al.  Constraining absolute neutrino masses via detection of galactic supernova neutrinos at JUNO , 2014, 1412.7418.

[25]  N. Saviano,et al.  Neutrino Flavor Conversions in High-Density Astrophysical and Cosmological Environments , 2014, Universe.

[26]  G. Drexlin,et al.  Current Direct Neutrino Mass Experiments , 2013, 1307.0101.

[27]  J. Lesgourgues,et al.  Neutrino Mass from Cosmology , 2012, 1212.6154.

[28]  S. Chakraborty,et al.  Testing Lorentz invariance with neutrino bursts from supernova neutronization , 2012, 1211.7069.

[29]  H. Janka,et al.  Probing the neutrino mass hierarchy with the rise time of a supernova burst , 2011, 1111.4483.

[30]  G. Pagliaroli,et al.  Neutrino mass bound in the standard scenario for supernova electronic antineutrino emission , 2010, 1002.3349.

[31]  F. R. Torres,et al.  Likelihood for supernova neutrino analyses , 2009, 0907.1891.

[32]  D. G. Banhatti Neutrinos of non-zero rest mass and the equivalence principle , 2009 .

[33]  Petr Vogel,et al.  Neutrinoless double beta decay , 2006, hep-ph/0611243.

[34]  H. Klapdor-kleingrothaus,et al.  The evidence for the observation of 0ν beta beta decay: The identification of 0ν beta beta events from the full spectra. , 2006 .

[35]  M. Kachelrieß,et al.  Exploiting the neutronization burst of a galactic supernova , 2004, astro-ph/0412082.

[36]  B. Margesin,et al.  New limits from the Milano neutrino mass experiment with thermal microcalorimeters , 2004 .

[37]  H. Janka,et al.  Monte Carlo Study of Supernova Neutrino Spectra Formation , 2002, astro-ph/0208035.

[38]  T. Loredo,et al.  Bayesian analysis of neutrinos observed from supernova SN-1987A , 2001, astro-ph/0107260.

[39]  A. Dighe,et al.  Identifying the neutrino mass spectrum from the neutrino burst from a supernova , 1999 .

[40]  K. Ishii,et al.  The mass of the electron neutrino from electron capture in 163Ho , 1994 .

[41]  T. Kuo,et al.  Neutrino Oscillations in Matter , 1989 .

[42]  Hirata,et al.  Observation in the Kamiokande-II detector of the neutrino burst from supernova SN1987A. , 1988, Physical review. D, Particles and fields.

[43]  Learned,et al.  Angular distribution of events from SN1987A. , 1988, Physical review. D, Particles and fields.

[44]  V. Volchenko,et al.  Possible Detection of a Neutrino Signal on 23 February 1987 at the Baksan Underground Scintillation Telescope of the Institute of Nuclear Research , 1987 .

[45]  Bennett,et al.  Measurement of the neutrino mass using the inner bremsstrahlung emitted in the electron-capture decay of 163Ho. , 1987, Physical review. A, General physics.

[46]  B. Kayser On the Quantum Mechanics of Neutrino Oscillation , 1981 .

[47]  C. Rubbia The Liquid Argon Time Projection Chamber: A New Concept for Neutrino Detectors , 1977 .

[48]  L. Hüdepohl,et al.  Neutrinos from the Formation, Cooling, and Black Hole Collapse of Neutron Stars , 2014 .

[49]  S. Mikheyev,et al.  Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos , 1986 .

[50]  G. Zatsepin On the possibility of determining the upper limit of the neutrino mass by means of the flight time , 1968 .