Analyzing the time spectrum of supernova neutrinos to constrain their effective mass or Lorentz Invariance Violation
暂无分享,去创建一个
[1] P. T. Surukuchi,et al. Tritium Beta Spectrum and Neutrino Mass Limit from Cyclotron Radiation Emission Spectroscopy , 2022, 2212.05048.
[2] A. Balantekin,et al. Exploiting stellar explosion induced by the QCD phase transition in large-scale neutrino detectors , 2022, Physical Review D.
[3] O. Mena,et al. Absolute ν Mass Measurement with the DUNE Experiment. , 2022, Physical review letters.
[4] Y. Qian,et al. Prospects for distinguishing supernova models using a future neutrino signal , 2022, Physical Review D.
[5] The Katrin Collaboration. Direct neutrino-mass measurement with sub-electronvolt sensitivity , 2022 .
[6] T. Schwetz,et al. NuFIT: Three-Flavour Global Analyses of Neutrino Oscillation Experiments , 2021, Universe.
[7] O. Mena,et al. Most constraining cosmological neutrino mass bounds , 2021, Physical Review D.
[8] Vito Antonelli,et al. Phenomenological Effects of CPT and Lorentz Invariance Violation in Particle and Astroparticle Physics , 2020, Symmetry.
[9] J. I. Crespo-Anadón,et al. SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy , 2020, New Journal of Physics.
[10] J. I. Crespo-Anad'on,et al. Supernova Neutrino Burst Detection with the Deep Underground Neutrino Experiment , 2020, 2008.06647.
[11] M. C. de Oliveira,et al. Theory of neutrino detection: flavor oscillations and weak values , 2020, The European Physical Journal C.
[12] V. P. Luzio,et al. Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics , 2020, 2002.03005.
[13] V. P. Luzio,et al. Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume IV Far Detector Single-phase Technology , 2020, 2002.03010.
[14] V. P. Luzio,et al. Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I: Introduction to DUNE , 2020, 2002.02967.
[15] A. K. Soma,et al. Search for Neutrinoless Double-β Decay with the Complete EXO-200 Dataset. , 2019, Physical review letters.
[16] M. Lindner,et al. Timing the neutrino signal of a Galactic supernova , 2019, Physical Review D.
[17] S. Blinnikov,et al. Quark deconfinement as a supernova explosion engine for massive blue supergiant stars , 2017, Nature Astronomy.
[18] K. Scholberg. Supernova signatures of neutrino mass ordering , 2017, 1707.06384.
[19] H. Janka. Neutrino Emission from Supernovae , 2017, 1702.08713.
[20] H. Janka. Neutrino-Driven Explosions , 2017, 1702.08825.
[21] M. Decowski,et al. Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen. , 2016, Physical review letters.
[22] H. Janka,et al. Supernova Neutrinos: Production, Oscillations and Detection , 2015, 1508.00785.
[23] E. Kemp,et al. Boundaries on Neutrino Mass from Supernovae Neutronization Burst by Liquid Argon Experiments , 2015, 1501.00456.
[24] Shun Zhou,et al. Constraining absolute neutrino masses via detection of galactic supernova neutrinos at JUNO , 2014, 1412.7418.
[25] N. Saviano,et al. Neutrino Flavor Conversions in High-Density Astrophysical and Cosmological Environments , 2014, Universe.
[26] G. Drexlin,et al. Current Direct Neutrino Mass Experiments , 2013, 1307.0101.
[27] J. Lesgourgues,et al. Neutrino Mass from Cosmology , 2012, 1212.6154.
[28] S. Chakraborty,et al. Testing Lorentz invariance with neutrino bursts from supernova neutronization , 2012, 1211.7069.
[29] H. Janka,et al. Probing the neutrino mass hierarchy with the rise time of a supernova burst , 2011, 1111.4483.
[30] G. Pagliaroli,et al. Neutrino mass bound in the standard scenario for supernova electronic antineutrino emission , 2010, 1002.3349.
[31] F. R. Torres,et al. Likelihood for supernova neutrino analyses , 2009, 0907.1891.
[32] D. G. Banhatti. Neutrinos of non-zero rest mass and the equivalence principle , 2009 .
[33] Petr Vogel,et al. Neutrinoless double beta decay , 2006, hep-ph/0611243.
[34] H. Klapdor-kleingrothaus,et al. The evidence for the observation of 0ν beta beta decay: The identification of 0ν beta beta events from the full spectra. , 2006 .
[35] M. Kachelrieß,et al. Exploiting the neutronization burst of a galactic supernova , 2004, astro-ph/0412082.
[36] B. Margesin,et al. New limits from the Milano neutrino mass experiment with thermal microcalorimeters , 2004 .
[37] H. Janka,et al. Monte Carlo Study of Supernova Neutrino Spectra Formation , 2002, astro-ph/0208035.
[38] T. Loredo,et al. Bayesian analysis of neutrinos observed from supernova SN-1987A , 2001, astro-ph/0107260.
[39] A. Dighe,et al. Identifying the neutrino mass spectrum from the neutrino burst from a supernova , 1999 .
[40] K. Ishii,et al. The mass of the electron neutrino from electron capture in 163Ho , 1994 .
[41] T. Kuo,et al. Neutrino Oscillations in Matter , 1989 .
[42] Hirata,et al. Observation in the Kamiokande-II detector of the neutrino burst from supernova SN1987A. , 1988, Physical review. D, Particles and fields.
[43] Learned,et al. Angular distribution of events from SN1987A. , 1988, Physical review. D, Particles and fields.
[44] V. Volchenko,et al. Possible Detection of a Neutrino Signal on 23 February 1987 at the Baksan Underground Scintillation Telescope of the Institute of Nuclear Research , 1987 .
[45] Bennett,et al. Measurement of the neutrino mass using the inner bremsstrahlung emitted in the electron-capture decay of 163Ho. , 1987, Physical review. A, General physics.
[46] B. Kayser. On the Quantum Mechanics of Neutrino Oscillation , 1981 .
[47] C. Rubbia. The Liquid Argon Time Projection Chamber: A New Concept for Neutrino Detectors , 1977 .
[48] L. Hüdepohl,et al. Neutrinos from the Formation, Cooling, and Black Hole Collapse of Neutron Stars , 2014 .
[49] S. Mikheyev,et al. Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos , 1986 .
[50] G. Zatsepin. On the possibility of determining the upper limit of the neutrino mass by means of the flight time , 1968 .