Computing zeta functions of arithmetic schemes

We present new algorithms for computing zeta functions of algebraic varieties over finite fields. In particular, let X be an arithmetic scheme (scheme of finite type over Z ), and for a prime p let ζXp(s) be the local factor of its zeta function. We present an algorithm that computes ζXp(s) for a single prime p in time p1/2+o(1) , and another algorithm that computes ζXp(s) for all primes p

[1]  Jan Tuitman,et al.  Counting points on curves using a map to P1, II , 2014, Finite Fields Their Appl..

[2]  Jan Tuitman,et al.  Improvements to the Deformation Method for Counting Points on Smooth Projective Hypersurfaces , 2013, Found. Comput. Math..

[3]  J. Tuitman Counting points on curves: the general case , 2014 .

[4]  Andrew V. Sutherland,et al.  Computing Hasse-Witt matrices of hyperelliptic curves in average polynomial time, II , 2014, 1410.5222.

[5]  David Harvey,et al.  Computing Hasse-Witt matrices of hyperelliptic curves in average polynomial time , 2014, LMS J. Comput. Math..

[6]  David Harvey,et al.  A search for Wilson primes , 2012, Math. Comput..

[7]  J. Voight,et al.  Computing zeta functions of nondegenerate hypersurfaces with few monomials , 2013 .

[8]  David Harvey,et al.  Counting points on hyperelliptic curves in average polynomial time , 2012, 1210.8239.

[9]  Peter Stevenhagen,et al.  Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography , 2011 .

[10]  Ralf Gerkmann,et al.  Relative Rigid Cohomology and Deformation of Hypersurfaces , 2010 .

[11]  Moritz Minzlaff,et al.  Computing Zeta Functions of Superelliptic Curves in Larger Characteristic , 2010, Math. Comput. Sci..

[12]  Hendrik Hubrechts,et al.  Fast arithmetic in unramified p-adic fields , 2009, Finite Fields Their Appl..

[13]  J. Bourgain On Exponential Sums in Finite Fields , 2010 .

[14]  J. Voight,et al.  On nondegeneracy of curves , 2008, 0802.0420.

[15]  D. J. Bernstein Fast multiplication and its applications , 2008 .

[16]  Daqing Wan,et al.  Algorithmic theory of zeta functions over finite fields , 2008 .

[17]  P. Gaudry,et al.  Linear Recurrences with Polynomial Coefficients and Application to Integer Factorization and Cartier-Manin Operator , 2007, SIAM J. Comput..

[18]  Alan G. B. Lauder,et al.  Counting points on varieties over finite fields of small characteristic , 2006, math/0612147.

[19]  David Harvey Kedlaya's Algorithm in Larger Characteristic , 2006, math/0610973.

[20]  F. Vercauteren,et al.  Computing Zeta Functions of Nondegenerate Curves , 2006, IACR Cryptol. ePrint Arch..

[21]  Alan G. B. Lauder A Recursive Method for Computing Zeta Functions of Varieties , 2006, math/0602352.

[22]  Timothy G. Abbott,et al.  Bounding Picard numbers of surfaces using p-adic cohomology , 2006, math/0601508.

[23]  Alan G. B. Lauder Counting Solutions to Equations in Many Variables over Finite Fields , 2004, Found. Comput. Math..

[24]  Jean-Pierre Serre Zeta and L functions , 2003 .

[25]  É. Schost,et al.  Fast Multivariate Power Series Multiplication in Characteristic Zero , 2003 .

[26]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[27]  Leonard M. Adleman,et al.  Counting Points on Curves and Abelian Varieties Over Finite Fields , 2001, J. Symb. Comput..

[28]  K. Kedlaya Counting Points on Hyperelliptic Curves using Monsky-Washnitzer Cohomology , 2001, math/0105031.

[29]  A. Meyers Reading , 1999, Language Teaching.

[30]  J. Pila Frobenius maps of Abelian varieties and finding roots of unity in finite fields , 1990 .

[31]  R. Schoof Elliptic Curves Over Finite Fields and the Computation of Square Roots mod p , 1985 .

[32]  Enrico Bombieri,et al.  On exponential sums in finite fields, II , 1978 .