Tackling the Gross-Pitaevskii energy functional with the Sobolev gradient - Analytical and numerical results

In this contribution, we prove the global existence and uniqueness of a trajectory that globally converges to the minimizer of the Gross-Pitaevskii energy functional for a large class of external potentials. Using the method of Sobolev gradients, we can provide an explicit construction of this minimizing sequence. Based upon this theoretical framework we numerically apply these results to a specific realization of the external potential and illustrate the main benefits of the method of Sobolev gradients, which are high numerical stability and rapid convergence toward the minimizer.

[1]  John William Neuberger,et al.  Sobolev gradients and differential equations , 1997 .

[2]  M. Beck,et al.  The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propa , 1999 .

[3]  Michael Jung,et al.  Methode der finiten Elemente für Ingenieure , 2001 .

[4]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[5]  Shahid S. Siddiqi,et al.  Energy minimization related to the nonlinear Schrödinger equation , 2009, J. Comput. Phys..

[6]  Qiang Du,et al.  Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..

[7]  Clark,et al.  Properties of a Bose-Einstein condensate in an anisotropic harmonic potential. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[8]  B. I. Schnieder,et al.  Numerical approach to the ground and excited states of a Bose-Einstein condensed gas confined in a completely anisotropic trap , 1999 .

[9]  Víctor M. Pérez-García,et al.  Optimizing Schrödinger Functionals Using Sobolev Gradients: Applications to Quantum Mechanics and Nonlinear Optics , 2001, SIAM J. Sci. Comput..

[10]  D. Thompson,et al.  Getting started with Numerov's method , 1998 .

[11]  Elliott H. Lieb,et al.  Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional , 1999, math-ph/9908027.

[12]  Succi,et al.  Ground state of trapped interacting bose-einstein condensates by an explicit imaginary-time algorithm , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  U. Manthe,et al.  The multi-configurational time-dependent Hartree approach , 1990 .

[14]  Ultracold few-boson systems in a double-well trap , 2006, quant-ph/0605210.

[15]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[16]  John William Neuberger,et al.  Potential theory and applications in a constructive method for finding critical points of Ginzburg-Landau type equations , 2008 .

[17]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[18]  E. Gross,et al.  Hydrodynamics of a Superfluid Condensate , 1963 .

[19]  Robert J. Renka,et al.  Critical Points of the Ginzburg–Landau Functional on Multiply-Connected Domains , 2000, Exp. Math..

[20]  E. Gross Structure of a quantized vortex in boson systems , 1961 .

[21]  Ground state and excited states of a confined condensed Bose gas. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[22]  J. J. Garcia-Ripoll,et al.  Vortex bending and tightly packed vortex lattices in Bose-Einstein condensates , 2001 .

[23]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[24]  P. Markowich,et al.  Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.

[25]  Sauro Succi,et al.  Numerical methods for atomic quantum gases with applications to Bose–Einstein condensates and to ultracold fermions , 2004 .