Fracture and fatigue response of a self-healing epoxy adhesive

A self-healing epoxy adhesive for bonding steel substrates is demonstrated using encapsulated dicyclopentadiene (DCPD) monomer and bis(tricyclohexylphosphine)benzylidine ruthenium (IV) dichloride (Grubbs’ first generation) catalyst particles dispersed in a thin epoxy matrix. Both quasi-static fracture and fatigue performance are evaluated using the width-tapered-double-cantilever-beam specimen geometry. Recovery of 56% of the original fracture toughness under quasi-static fracture conditions occurs after 24 h healing at room temperature conditions. Complete crack arrest is demonstrated for fatigue test conditions that render neat resin and control samples failed. Inspection of fracture surfaces by electron microscopy reveals evidence of polymerized DCPD after healing. These results are the first mechanical assessment of self-healing for thin (ca. 360 mm) films typical of adhesives applications.

[1]  N. Sottos,et al.  In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene , 2003, Journal of microencapsulation.

[2]  S. Hayes,et al.  Self-healing of damage in fibre-reinforced polymer-matrix composites , 2007, Journal of The Royal Society Interface.

[3]  N. Sottos,et al.  Wax‐Protected Catalyst Microspheres for Efficient Self‐Healing Materials , 2005 .

[4]  C. Quan,et al.  Experimental Mechanics , 1881, Nature.

[5]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[6]  Michael R Wisnom,et al.  Composites Part A: Applied Science and Manufacturing , 2012 .

[7]  David A. Dillard,et al.  The effect of the T-stress on crack path selection in adhesively bonded joints , 2001 .

[8]  Ian P Bond,et al.  A self-healing carbon fibre reinforced polymer for aerospace applications , 2007 .

[9]  N. Sottos,et al.  Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite—Part II: In situ self-healing , 2005 .

[10]  N. Sottos,et al.  Self-healing structural composite materials , 2003 .

[11]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[12]  SELF-HEALING ADHESIVE FILM FOR COMPOSITE LAMINATE REPAIRS ON METALLIC STRUCTURES , 2007 .

[13]  Mica Grujicic,et al.  An overview of the polymer-to-metal direct-adhesion hybrid technologies for load-bearing automotive components , 2008 .

[14]  N. Sottos,et al.  Fracture testing of a self-healing polymer composite , 2002 .

[15]  Matthew J. Rosseinsky,et al.  Advanced Functional Materials , 2015, Materials Science Forum.

[16]  J. Mcginity Journal of Microencapsulation , 2004, Clinical & Experimental Metastasis.

[17]  S. Nutt,et al.  A Thermally Re-mendable Cross-Linked Polymeric Material , 2002, Science.

[18]  M. Rong,et al.  Self-healing epoxy based on cationic chain polymerization , 2009 .

[19]  Michael R. Kessler,et al.  Cure kinetics of the ring‐opening metathesis polymerization of dicyclopentadiene , 2002 .

[20]  Sia Nemat-Nasser,et al.  Quantitative evaluation of fracture, healing and re-healing of a reversibly cross-linked polymer , 2007 .

[21]  J. Lewis,et al.  Self-healing materials with microvascular networks. , 2007, Nature materials.

[22]  A. Fernyhough,et al.  Composites are IT , 1997 .

[23]  Alan Baker,et al.  Advances in the Bonded Composite Repair of Metallic Aircraft Structure , 2002 .

[24]  Andreas Öchsner,et al.  International Journal of Adhesion and Adhesives: Guest editorial , 2011 .

[25]  R. Gibson,et al.  Experimental studies of Mode I energy release rate in adhesively bonded width tapered composite DCB specimens , 2005 .

[26]  Hongzheng Chen,et al.  Journal of Polymer Science Part A-Polymer Chemistry , 2008 .

[27]  W. Hwang,et al.  Interlaminar Fracture Behavior and Fiber Bridging of Glass-Epoxy Composite Under Mode I Static and Cyclic Loadings , 1989 .

[28]  Anthony G. Evans,et al.  Crack deflection processes—I. Theory , 1983 .

[29]  ScienceDirect,et al.  Composites science and technology , 1985 .

[30]  David R. Clarke,et al.  Annual review of materials research , 2001 .

[31]  N. Sottos,et al.  Characterization of Microvascular-Based Self-healing Coatings , 2009 .

[32]  Jeffrey S. Moore,et al.  Self-Healing Polymers and Composites , 2010 .

[33]  N. Sottos,et al.  Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite – Part I: Manual infiltration , 2005 .

[34]  N. Sottos,et al.  In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene , 2003 .

[35]  Nancy R. Sottos,et al.  Full Recovery of Fracture Toughness Using a Nontoxic Solvent‐Based Self‐Healing System , 2008 .

[36]  N. Sottos,et al.  Microcapsule induced toughening in a self-healing polymer composite , 2004 .

[37]  N. Sottos,et al.  Life extension of self-healing polymers with rapidly growing fatigue cracks , 2007, Journal of The Royal Society Interface.

[38]  A. Evans,et al.  Crack deflection processes—II. Experiment , 1983 .

[39]  Norman A. Fleck,et al.  Crack path selection in a brittle adhesive layer , 1991 .

[40]  N. Sottos,et al.  Autonomic healing of polymer composites , 2001, Nature.