The Role of 2,4-Diacetylphloroglucinol- and Phenazine-1-Carboxylic Acid-Producing Pseudomonas spp. in Natural Protection of Wheat from Soilborne Pathogens

[1]  S. Scheu,et al.  Predator-Prey Chemical Warfare Determines the Expression of Biocontrol Genes by Rhizosphere-Associated Pseudomonas fluorescens , 2010, Applied and Environmental Microbiology.

[2]  E. Baehler,et al.  Combination of fluorescent reporters for simultaneous monitoring of root colonization and antifungal gene expression by a biocontrol pseudomonad on cereals with flow cytometry. , 2010, Molecular plant-microbe interactions : MPMI.

[3]  P. Bakker,et al.  Isolation, characterization, and sensitivity to 2,4-diacetylphloroglucinol of isolates of Phialophora spp. from Washington wheat fields. , 2010, Phytopathology.

[4]  Dianne K. Newman,et al.  Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales. , 2010, Research in microbiology.

[5]  L. Pierson,et al.  Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes , 2010, Applied Microbiology and Biotechnology.

[6]  D. Newman,et al.  Endogenous Phenazine Antibiotics Promote Anaerobic Survival of Pseudomonas aeruginosa via Extracellular Electron Transfer , 2009, Journal of bacteriology.

[7]  Dibakar Pal EXPLOITING GENOTYPIC DIVERSITY OF 2, 4- DIACETYLPHLOROGLUCINOL PRODUCING Pseudomonas spp. , 2010 .

[8]  F. O'Gara,et al.  The Pseudomonas fluorescens secondary metabolite 2,4 diacetylphloroglucinol impairs mitochondrial function in Saccharomyces cerevisiae , 2010, Antonie van Leeuwenhoek.

[9]  W. Blankenfeldt,et al.  Diversity and Evolution of the Phenazine Biosynthesis Pathway , 2009, Applied and Environmental Microbiology.

[10]  R. Breinbauer,et al.  Of Two Make One: The Biosynthesis of Phenazines , 2009, Chembiochem : a European journal of chemical biology.

[11]  C. Pieterse,et al.  Networking by small-molecule hormones in plant immunity. , 2009, Nature chemical biology.

[12]  W. Stiekema,et al.  Evolutionary History of the phl Gene Cluster in the Plant-Associated Bacterium Pseudomonas fluorescens , 2009, Applied and Environmental Microbiology.

[13]  M. Höfte,et al.  Rhizobacteria-induced systemic resistance , 2009 .

[14]  M. Maurhofer,et al.  Influence of Host Plant Genotype, Presence of a Pathogen, and Coinoculation with Pseudomonas fluorescens Strains on the Rhizosphere Expression of Hydrogen Cyanide- and 2,4-Diacetylphloroglucinol Biosynthetic Genes in P. fluorescens Biocontrol Strain CHA0 , 2009, Microbial Ecology.

[15]  R. Breinbauer,et al.  PhzA/B catalyzes the formation of the tricycle in phenazine biosynthesis. , 2008, Journal of the American Chemical Society.

[16]  B. M. Gardener,et al.  2,4-diacetylphloroglucinol alters plant root development. , 2008, Molecular plant-microbe interactions : MPMI.

[17]  P. Okubara,et al.  Accumulation of Pseudomonas-derived 2,4-diacetylphloroglucinol on wheat seedling roots is influenced by host cultivar , 2008 .

[18]  J. E. Pemberton,et al.  Efficient purification of the biosurfactant viscosin from Pseudomonas libanensis strain M9-3 and its physicochemical and biological properties. , 2008, Journal of natural products.

[19]  D. Newman,et al.  Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen. , 2008, Environmental science & technology.

[20]  L. Pierson,et al.  Altering the Ratio of Phenazines in Pseudomonas chlororaphis (aureofaciens) Strain 30-84: Effects on Biofilm Formation and Pathogen Inhibition , 2008, Journal of bacteriology.

[21]  Jean-Marie Meyer,et al.  Chapter 4 Iron Dynamics in the Rhizosphere: Consequences for Plant Health and Nutrition , 2008 .

[22]  C. Keel,et al.  Detection of Plant-Modulated Alterations in Antifungal Gene Expression in Pseudomonas fluorescens CHA0 on Roots by Flow Cytometry , 2007, Applied and Environmental Microbiology.

[23]  N. Serkova,et al.  N-(3-Hydroxyhexanoyl)-l-Homoserine Lactone Is the Biologically Relevant Quormone That Regulates the phz Operon of Pseudomonas chlororaphis Strain 30-84 , 2007, Applied and Environmental Microbiology.

[24]  L. Thomashow,et al.  Quantification of 2,4-Diacetylphloroglucinol-Producing Pseudomonas fluorescens Strains in the Plant Rhizosphere by Real-Time PCR , 2007, Applied and Environmental Microbiology.

[25]  Dianne K. Newman,et al.  Pyocyanin Alters Redox Homeostasis and Carbon Flux through Central Metabolic Pathways in Pseudomonas aeruginosa PA14 , 2007, Journal of bacteriology.

[26]  Bryan T Greenhagen,et al.  Structural and functional analysis of the pyocyanin biosynthetic protein PhzM from Pseudomonas aeruginosa. , 2007, Biochemistry.

[27]  S. R. Giddens,et al.  Investigations into the in vitro antimicrobial activity and mode of action of the phenazine antibiotic D-alanylgriseoluteic acid. , 2007, International journal of antimicrobial agents.

[28]  B. Landa,et al.  Role of 2,4-Diacetylphloroglucinol-Producing Fluorescent Pseudomonas spp. in the Defense of Plant Roots , 2006 .

[29]  D. De Vleesschauwer,et al.  Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. , 2006, Molecular plant-microbe interactions : MPMI.

[30]  D. Haas,et al.  Cross-Species GacA-Controlled Induction of Antibiosis in Pseudomonads , 2006, Applied and Environmental Microbiology.

[31]  Huimin Zhao,et al.  Characterization of the Substrate Specificity of PhlD, a Type III Polyketide Synthase from Pseudomonas fluorescens* , 2006, Journal of Biological Chemistry.

[32]  W. Blankenfeldt,et al.  Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. , 2006, Annual review of phytopathology.

[33]  L. Pierson,et al.  Quorum Sensing and Phenazines are Involved in Biofilm Formation by Pseudomonas chlororaphis (aureofaciens) Strain 30-84 , 2006, Microbial Ecology.

[34]  B. Landa,et al.  phlD-based genetic diversity and detection of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. , 2006, FEMS microbiology ecology.

[35]  B. Landa,et al.  Enrichment and genotypic diversity of phlD-containing fluorescent Pseudomonas spp. in two soils after a century of wheat and flax monoculture. , 2006, FEMS microbiology ecology.

[36]  L. Wick,et al.  Two novel MvaT-like global regulators control exoproduct formation and biocontrol activity in root-associated Pseudomonas fluorescens CHA0. , 2006, Molecular plant-microbe interactions : MPMI.

[37]  D. Newman,et al.  Rethinking 'secondary' metabolism: physiological roles for phenazine antibiotics , 2006, Nature chemical biology.

[38]  C. Keel,et al.  Characterization of PhlG, a Hydrolase That Specifically Degrades the Antifungal Compound 2,4-Diacetylphloroglucinol in the Biocontrol Agent Pseudomonas fluorescens CHA0 , 2006, Applied and Environmental Microbiology.

[39]  P. Slininger,et al.  Liquid-culture pH, temperature, and carbon (not nitrogen) source regulate phenazine productivity of the take-all biocontrol agentPseudomonas fluorescens 2-79 , 1995, Applied Microbiology and Biotechnology.

[40]  C. Keel,et al.  Use of green fluorescent protein‐based reporters to monitor balanced production of antifungal compounds in the biocontrol agent Pseudomonas fluorescens CHA0 , 2005, Journal of applied microbiology.

[41]  D. Haas,et al.  Biological control of soil-borne pathogens by fluorescent pseudomonads , 2005, Nature Reviews Microbiology.

[42]  Huimin Zhao,et al.  Biosynthesis of phloroglucinol. , 2005, Journal of the American Chemical Society.

[43]  J. Raaijmakers,et al.  Influence of plant species on population dynamics, genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp. , 2005, FEMS microbiology ecology.

[44]  U. Schnider-Keel,et al.  RpoN (sigma54) controls production of antifungal compounds and biocontrol activity in Pseudomonas fluorescens CHA0. , 2005, Molecular plant-microbe interactions : MPMI.

[45]  A. Boronin,et al.  Antagonistic activity among 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. , 2005, FEMS microbiology letters.

[46]  L. Tong,et al.  Structure and function of the phenazine biosynthetic protein PhzF from Pseudomonas fluorescens. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[47]  E. Eisenstein,et al.  Structure of the phenazine biosynthesis enzyme PhzG. , 2004, Acta crystallographica. Section D, Biological crystallography.

[48]  D. Phillips,et al.  Microbial Products Trigger Amino Acid Exudation from Plant Roots1 , 2004, Plant Physiology.

[49]  F. O'Gara,et al.  The putative permease PhlE of Pseudomonas fluorescens F113 has a role in 2,4-diacetylphloroglucinol resistance and in general stress tolerance. , 2004, Microbiology.

[50]  V. Martínez,et al.  Cross Talk between 2,4-Diacetylphloroglucinol-Producing Biocontrol Pseudomonads on Wheat Roots , 2004, Applied and Environmental Microbiology.

[51]  Andreas Kappler,et al.  Phenazines and Other Redox-Active Antibiotics Promote Microbial Mineral Reduction , 2004, Applied and Environmental Microbiology.

[52]  P. Hirsch,et al.  Plant genotype, micronutrient fertilization and take-all infection influence bacterial populations in the rhizosphere of wheat , 1996, Plant and Soil.

[53]  M. Jackson,et al.  Nutritional factors regulating growth and accumulation of phenazine 1-carboxylic acid by Pseudomonas fluorescens 2-79 , 1992, Applied Microbiology and Biotechnology.

[54]  S. Shaukat,et al.  Systemic Resistance in Tomato Induced by Biocontrol Bacteria Against the Root‐Knot Nematode, Meloidogyne javanica is Independent of Salicylic Acid Production , 2004 .

[55]  D. Hassett,et al.  Human targets of Pseudomonas aeruginosa pyocyanin , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[56]  E. Boutet,et al.  Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. , 2003, Molecular plant-microbe interactions : MPMI.

[57]  C. Sibley,et al.  Role of MDR1 and MRP1 in trophoblast cells, elucidated using retroviral gene transfer. , 2003, American journal of physiology. Cell physiology.

[58]  G. Denning,et al.  Phenazine-1-carboxylic acid, a secondary metabolite of Pseudomonas aeruginosa, alters expression of immunomodulatory proteins by human airway epithelial cells. , 2003, American journal of physiology. Lung cellular and molecular physiology.

[59]  J. T. de Souza,et al.  Effect of 2,4-diacetylphloroglucinol on pythium: cellular responses and variation in sensitivity among propagules and species. , 2003, Phytopathology.

[60]  C. Whistler,et al.  Repression of Phenazine Antibiotic Production in Pseudomonas aureofaciens Strain 30-84 by RpeA , 2003, Journal of bacteriology.

[61]  B. Ownley,et al.  Identification and Manipulation of Soil Properties To Improve the Biological Control Performance of Phenazine-Producing Pseudomonas fluorescens , 2003, Applied and Environmental Microbiology.

[62]  E. Eisenstein,et al.  Structure and mechanism of Pseudomonas aeruginosa PhzD, an isochorismatase from the phenazine biosynthetic pathway. , 2003, Biochemistry.

[63]  E. Kandeler,et al.  Structure and function of the soil microbial community in a long-term fertilizer experiment , 2003 .

[64]  J. T. de Souza,et al.  Frequency, Diversity, and Activity of 2,4-Diacetylphloroglucinol-Producing Fluorescent Pseudomonas spp. in Dutch Take-all Decline Soils. , 2003, Phytopathology.

[65]  D. Haas,et al.  Fusaric Acid-Producing Strains of Fusarium oxysporum Alter 2,4-Diacetylphloroglucinol Biosynthetic Gene Expression in Pseudomonas fluorescens CHA0 In Vitro and in the Rhizosphere of Wheat , 2002, Applied and Environmental Microbiology.

[66]  T. Nishi,et al.  The vacuolar (H+)-ATPases — nature's most versatile proton pumps , 2002, Nature Reviews Molecular Cell Biology.

[67]  B. M. Gardener,et al.  Microbial populations responsible for specific soil suppressiveness to plant pathogens. , 2002, Annual review of phytopathology.

[68]  L. Thomashow,et al.  Functional Analysis of Genes for Biosynthesis of Pyocyanin and Phenazine-1-Carboxamide from Pseudomonas aeruginosa PAO1 , 2001, Journal of bacteriology.

[69]  U. Schnider-Keel,et al.  Biotic Factors Affecting Expression of the 2,4-Diacetylphloroglucinol Biosynthesis Gene phlA in Pseudomonas fluorescens Biocontrol Strain CHA0 in the Rhizosphere. , 2001, Phytopathology.

[70]  L. Thomashow,et al.  Phenazine Biosynthesis in Pseudomonas fluorescens: Branchpoint from the Primary Shikimate Biosynthetic Pathway and Role of Phenazine-1,6-dicarboxylic Acid , 2001 .

[71]  J. Thomas-Oates,et al.  Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. , 2001, Molecular plant-microbe interactions : MPMI.

[72]  D. Weller,et al.  Exploiting Genotypic Diversity of 2,4-Diacetylphloroglucinol-Producing Pseudomonas spp.: Characterization of Superior Root-Colonizing P. fluorescensStrain Q8r1-96 , 2001, Applied and Environmental Microbiology.

[73]  L. Thomashow,et al.  phzO, a Gene for Biosynthesis of 2-Hydroxylated Phenazine Compounds in Pseudomonas aureofaciens 30-84 , 2001, Journal of bacteriology.

[74]  S. Kalloger,et al.  Genotypic and Phenotypic Diversity of phlD-ContainingPseudomonas Strains Isolated from the Rhizosphere of Wheat , 2000, Applied and Environmental Microbiology.

[75]  Dieter Haas,et al.  Autoinduction of 2,4-Diacetylphloroglucinol Biosynthesis in the Biocontrol Agent Pseudomonas fluorescensCHA0 and Repression by the Bacterial Metabolites Salicylate and Pyoluteorin , 2000, Journal of bacteriology.

[76]  D. Weller,et al.  Effect of Population Density of Pseudomonas fluorescens on Production of 2,4-Diacetylphloroglucinol in the Rhizosphere of Wheat. , 1999, Phytopathology.

[77]  H. Leclerc,et al.  Taxonomic study of bacteria isolated from Lebanese spring waters: proposal for Pseudomonas cedrella sp. nov. and P. orientalis sp. nov. , 1999, Research in microbiology.

[78]  D. Wood,et al.  Two-Component Transcriptional Regulation of N -Acyl-Homoserine Lactone Production inPseudomonas aureofaciens , 1999, Applied and Environmental Microbiology.

[79]  L. Thomashow,et al.  Identification and Characterization of a Gene Cluster for Synthesis of the Polyketide Antibiotic 2,4-Diacetylphloroglucinol from Pseudomonas fluorescens Q2-87 , 1999, Journal of bacteriology.

[80]  A. Boronin,et al.  A Seven-Gene Locus for Synthesis of Phenazine-1-Carboxylic Acid by Pseudomonas fluorescens2-79 , 1998, Journal of bacteriology.

[81]  D. Weller,et al.  Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils , 1998 .

[82]  D. Wood,et al.  Homoserine lactone-mediated gene regulation in plant-associated bacteria. , 1998, Annual review of phytopathology.

[83]  B. Duffy,et al.  Zinc Improves Biocontrol of Fusarium Crown and Root Rot of Tomato by Pseudomonas fluorescens and Represses the Production of Pathogen Metabolites Inhibitory to Bacterial Antibiotic Biosynthesis. , 1997, Phytopathology.

[84]  F. O'Gara,et al.  Role of 2,4-Diacetylphloroglucinol in the Interactions of the Biocontrol Pseudomonad Strain F113 with the Potato Cyst Nematode Globodera rostochiensis , 1997, Applied and environmental microbiology.

[85]  L. Thomashow,et al.  Frequency of Antibiotic-Producing Pseudomonas spp. in Natural Environments , 1997, Applied and environmental microbiology.

[86]  D. Wood,et al.  The phzI gene of Pseudomonas aureofaciens 30-84 is responsible for the production of a diffusible signal required for phenazine antibiotic production. , 1996, Gene.

[87]  A. Sarniguet,et al.  The sigma factor sigma s affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[88]  F. Gong,et al.  Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium. Pseudomonas aureofaciens 30-84. , 1995, FEMS microbiology letters.

[89]  C. Keel,et al.  Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities , 1995, Journal of bacteriology.

[90]  F. O'Gara,et al.  Mutational Disruption of the Biosynthesis Genes Coding for the Antifungal Metabolite 2,4-Diacetylphloroglucinol Does Not Influence the Ecological Fitness of Pseudomonas fluorescens F113 in the Rhizosphere of Sugarbeets , 1995, Applied and environmental microbiology.

[91]  D. Wood,et al.  Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density , 1994, Journal of bacteriology.

[92]  D. Weller,et al.  Purification of an antibiotic effective against Gaeumannomyces graminis var. tritici produced by a biocontrol agent, Pseudomonas aureofaciens , 1993 .

[93]  M. Mazzola,et al.  Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats , 1992, Applied and environmental microbiology.

[94]  C. Keel,et al.  Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[95]  D. Hassett,et al.  Response of Pseudomonas aeruginosa to pyocyanin: mechanisms of resistance, antioxidant defenses, and demonstration of a manganese-cofactored superoxide dismutase , 1992, Infection and immunity.

[96]  F. O'Gara,et al.  Isolation of 2,4-Diacetylphloroglucinol from a Fluorescent Pseudomonad and Investigation of Physiological Parameters Influencing Its Production , 1992, Applied and environmental microbiology.

[97]  C. Keel,et al.  Suppression of root diseases by Pseudomonas fluorescens CHA0 - importance of the bacterial seconday metabolite 2,4-diacetylphloroglucinol , 1992 .

[98]  B. Ownley Influence of in situ and in vitro pH on suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79. , 1992 .

[99]  D. Weller,et al.  Genetic analysis of the antifungal activity of a soilborne Pseudomonas aureofaciens strain , 1991, Applied and environmental microbiology.

[100]  R. Cook,et al.  Wheat health management. , 1991 .

[101]  L. Thomashow,et al.  Production of the Antibiotic Phenazine-1-Carboxylic Acid by Fluorescent Pseudomonas Species in the Rhizosphere of Wheat , 1990, Applied and environmental microbiology.

[102]  L. Thomashow,et al.  Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici , 1988, Journal of bacteriology.

[103]  I. Chet Innovative Approaches to Plant Disease Control , 1987 .

[104]  H. Marschner Mineral Nutrition of Higher Plants , 1988 .

[105]  G. Défago,et al.  Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco , 1986 .

[106]  J. M. Turner,et al.  Occurrence, biochemistry and physiology of phenazine pigment production. , 1986, Advances in microbial physiology.

[107]  R. Cook The influence of rotation crops on take-all decline phenomenon. , 1981 .

[108]  I. Fridovich,et al.  Mechanism of the antibiotic action pyocyanine , 1980, Journal of bacteriology.

[109]  C. R. Howell Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. , 1980 .

[110]  C. R. Howell Control of rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. , 1979 .

[111]  A. Rovira,et al.  The role of bacteria in the biological control of Gaeumannomyces graminis by suppressive soils , 1976 .

[112]  J. Stallings Soil produced antibiotics; plant disease and insect control. , 1954, Bacteriological reviews.