Testing Shift-Equivalence of Polynomials by Deterministic, Probabilistic and Quantum Machines

The polynomials ƒ, g E F[X1,…,Xn] are called shift-equivalent if there exists a shift (α1,…, αn) E Fn such that ƒ(X1 + α1,… ,Xn + αn) = g. In three different cases algorithms which produce the set of all shift-equivalences of ƒ, g in polynomial time are designed. Here 1. (1) in the case of a zero-characteristic field F the designed algorithm is deterministic; 2. (2) in the case of a prime residue field F = Fp and a reduced polynomial ƒ, i.e. degXi(ƒ))</ p − 1, 1 </ i </ n, the algorithm is randomized; 3. (3) in the case of a finite field F = Fq of characteristic 2 the algorithm is quantum; for an arbitrary finite field fFq a quantum machine, which computes the group of all shift-selfequivalences of ƒ, i.e. (β1,…, βn) E Fqn such that ƒ(X1 + β1,…,Xn + βn) = ƒ, is designed.

[1]  Dima Grigoriev,et al.  Algorithms for Computing Sparse Shifts for Multivariate Polynomials , 1995, ISSAC.

[2]  N. S. Barnett,et al.  Private communication , 1969 .

[3]  Marek Karpinski,et al.  On Some Approximation Problems Concerning Sparse Polynomials over Finite Fields , 1996, Theor. Comput. Sci..

[4]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[5]  R. Loos Generalized Polynomial Remainder Sequences , 1983 .

[6]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[7]  Richard J. Lipton,et al.  Quantum Cryptanalysis of Hidden Linear Functions (Extended Abstract) , 1995, CRYPTO.

[8]  I. Shparlinski,et al.  Eecient Approximation Algorithms for Sparse Polynomials over Finite Fields , 1994 .

[9]  Marek Karpinski,et al.  A Zero-Test and an Interpolation Algorithm for the Shifted Sparse Polynominals , 1993, AAECC.

[10]  Richard M. Karp,et al.  Monte-Carlo Approximation Algorithms for Enumeration Problems , 1989, J. Algorithms.

[11]  D. Coppersmith An approximate Fourier transform useful in quantum factoring , 2002, quant-ph/0201067.

[12]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[13]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[14]  B. David Saunders,et al.  On computing sparse shifts for univariate polynomials , 1994, ISSAC '94.

[15]  J. Calmet Computer Algebra , 1982 .

[16]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[17]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[18]  Marek Karpinski,et al.  An approximation algorithm for the number of zeros or arbitrary polynomials over GF(q) , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.