Online Multiscale-Data Classification Based on Multikernel Adaptive Filtering with Application to Sentiment Analysis

We present an online method for multiscale data classification, using the multikernel adaptive filtering framework. The target application is Twitter sentiment analysis, which is a notoriously challenging task of natural language processing. This is because (i) each tweet is typically short, and (ii) domainspecific expressions tend to be used. The efficacy of the proposed multiscale online method is studied with dataset of Twitter. Simulation results show that the proposed approach achieves a higher F1 score than the other online-classification methods, and also outperforms the nonlinear support vector machine.

[1]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[2]  Koby Crammer,et al.  Confidence-weighted linear classification , 2008, ICML '08.

[3]  Quoc V. Le,et al.  Distributed Representations of Sentences and Documents , 2014, ICML.

[4]  Graeme Hirst,et al.  Computing Lexical Contrast , 2013, CL.

[5]  Preslav Nakov,et al.  SemEval-2013 Task 2: Sentiment Analysis in Twitter , 2013, *SEMEVAL.

[6]  Martin Zinkevich,et al.  Online Convex Programming and Generalized Infinitesimal Gradient Ascent , 2003, ICML.

[7]  Julie Beth Lovins,et al.  Development of a stemming algorithm , 1968, Mech. Transl. Comput. Linguistics.

[8]  Koby Crammer,et al.  New Adaptive Algorithms for Online Classification , 2010, NIPS.

[9]  Geoffrey Zweig,et al.  Linguistic Regularities in Continuous Space Word Representations , 2013, NAACL.

[10]  Hans Peter Luhn,et al.  A Statistical Approach to Mechanized Encoding and Searching of Literary Information , 1957, IBM J. Res. Dev..

[11]  Steven C. H. Hoi,et al.  LIBOL: a library for online learning algorithms , 2014, J. Mach. Learn. Res..

[12]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[13]  Paul Honeine,et al.  Online Prediction of Time Series Data With Kernels , 2009, IEEE Transactions on Signal Processing.

[14]  Iadh Ounis,et al.  Automatically Building a Stopword List for an Information Retrieval System , 2005, J. Digit. Inf. Manag..

[15]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[16]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[17]  Nikos Pelekis,et al.  DataStories at SemEval-2017 Task 4: Deep LSTM with Attention for Message-level and Topic-based Sentiment Analysis , 2017, *SEMEVAL.

[18]  Steven C. H. Hoi,et al.  Exact Soft Confidence-Weighted Learning , 2012, ICML.

[19]  Yi Li,et al.  The Relaxed Online Maximum Margin Algorithm , 1999, Machine Learning.

[20]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[21]  Masahiro Yukawa,et al.  Adaptive Learning in Cartesian Product of Reproducing Kernel Hilbert Spaces , 2014, IEEE Transactions on Signal Processing.

[22]  Nobuhiro Kaji,et al.  Incremental Skip-gram Model with Negative Sampling , 2017, EMNLP.

[23]  Claudio Gentile,et al.  A New Approximate Maximal Margin Classification Algorithm , 2002, J. Mach. Learn. Res..

[24]  Ming Zhou,et al.  Sentiment Embeddings with Applications to Sentiment Analysis , 2016, IEEE Transactions on Knowledge and Data Engineering.

[25]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[26]  Zellig S. Harris,et al.  Distributional Structure , 1954 .

[27]  Masahiro Yukawa,et al.  Multikernel Adaptive Filtering , 2012, IEEE Transactions on Signal Processing.

[28]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[29]  K. Robert Lai,et al.  Refining Word Embeddings for Sentiment Analysis , 2017, EMNLP.

[30]  Yoon Kim,et al.  Convolutional Neural Networks for Sentence Classification , 2014, EMNLP.

[31]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[32]  Martin F. Porter,et al.  An algorithm for suffix stripping , 1997, Program.