Electrostatics of non-neutral biological microdomains

Voltage and charge distributions in cellular microdomains regulate communications, excitability, and signal transduction. We report here new electrical laws in a biological cell, which follow from a nonlinear electro-diffusion model. These newly discovered laws derive from the geometrical cell-membrane properties, such as membrane curvature, volume, and surface area. The electro-diffusion laws can now be used to predict and interpret voltage distribution in cellular microdomains such as synapses, dendritic spine, cilia and more.

[1]  David Andelman,et al.  Dipolar Poisson-Boltzmann equation: ions and dipoles close to charge interfaces. , 2007, Physical review letters.

[2]  Roberto Araya,et al.  The spine neck filters membrane potentials , 2006, Proceedings of the National Academy of Sciences.

[3]  L. Savtchenko,et al.  Electric fields of synaptic currents could influence diffusion of charged neurotransmitter molecules , 2004, Synapse.

[4]  R. Eisenberg,et al.  Diffusion as a chemical reaction: Stochastic trajectories between fixed concentrations , 1995 .

[5]  F. Bezanilla How membrane proteins sense voltage , 2008, Nature Reviews Molecular Cell Biology.

[6]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[7]  D. Johnston,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997 .

[8]  David Holcman,et al.  Analysis of the Poisson–Nernst–Planck equation in a ball for modeling the Voltage–Current relation in neurobiological microdomains , 2017 .

[9]  B. Eisenberg Ionic Channels in Biological Membranes: Natural , 1998 .

[10]  J. S. Coggan,et al.  Computational modeling of three-dimensional electrodiffusion in biological systems: application to the node of Ranvier. , 2008, Biophysical journal.

[11]  B. Eisenberg Ionic channels in biological membranes- electrostatic analysis of a natural nanotube , 1998, 1610.04123.

[12]  Rafael Yuste,et al.  Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes. , 2017, Nature nanotechnology.

[13]  R. Eisenberg,et al.  From Structure to Function in Open Ionic Channels , 1999, The Journal of Membrane Biology.

[14]  J. Bourne,et al.  Balancing structure and function at hippocampal dendritic spines. , 2008, Annual review of neuroscience.

[15]  T. J. Sejnowski,et al.  An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons , 1989, Biological Cybernetics.

[16]  Z. Schuss,et al.  NET in Molecular and Cellular Biology , 2015 .

[17]  Rafael Yuste,et al.  Activity-dependent dendritic spine neck changes are correlated with synaptic strength , 2014, Proceedings of the National Academy of Sciences.

[18]  E. H ckel,et al.  Zur Theorie der Elektrolyte , 1924 .

[19]  D. Andelman Introduction to Electrostatics in Soft and Biological Matter , 2006 .

[20]  R. Yuste Dendritic Spines , 2010 .

[21]  Rafael Yuste,et al.  The new nanophysiology: regulation of ionic flow in neuronal subcompartments , 2015, Nature Reviews Neuroscience.

[22]  Abraham Nitzan,et al.  The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single-channel currents. , 2003, Biophysical journal.

[23]  Rukshan T. Perera,et al.  Voltage-Rectified Current and Fluid Flow in Conical Nanopores. , 2016, Accounts of chemical research.

[24]  R. Horn,et al.  Permeation redux: thermodynamics and kinetics of ion movement through potassium channels. , 2014, Biophysical journal.

[25]  L. Savtchenko,et al.  Spike-Driven Glutamate Electrodiffusion Triggers Synaptic Potentiation via a Homer-Dependent mGluR-NMDAR Link , 2013, Neuron.

[26]  Sergiy Sylantyev,et al.  Electric Fields Due to Synaptic Currents Sharpen Excitatory Transmission , 2008, Science.

[27]  C. Peskin,et al.  Computer simulation of voltage sensitive calcium ion channels in a dendritic spine. , 2013, Journal of theoretical biology.