Integrated silicon nitride time-bin entanglement circuits

Time-bin entangled states are generated and analyzed in an integrated silicon nitride chip. Quantum state tomography indicates 91% fidelity to the ideal state, demonstrating its potential for applications in quantum communication networks.

[1]  Michael J. Strain,et al.  Qubit entanglement between ring-resonator photon-pair sources on a silicon chip , 2014, Nature Communications.

[2]  W Tittel,et al.  Distribution of time-bin entangled qubits over 50 km of optical fiber. , 2004, Physical review letters.

[3]  Wei Zhang,et al.  Quantum Secure Direct Communication with Quantum Memory. , 2016, Physical review letters.

[4]  N. Gisin,et al.  Long-distance entanglement swapping with photons from separated sources , 2004, quant-ph/0409093.

[5]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[6]  B. Eggleton,et al.  High repetition rate correlated photon pair generation in integrated silicon nanowires. , 2017, Applied optics.

[7]  Wei Zhang,et al.  Experimental long-distance quantum secure direct communication. , 2017, Science bulletin.

[8]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[9]  Hiroki Takesue,et al.  Implementation of quantum state tomography for time-bin entangled photon pairs. , 2009, Optics express.

[10]  V. Zwiller,et al.  On-Chip Single-Photon Sifter , 2016, 1611.03245.

[11]  J Fan,et al.  Invited review article: Single-photon sources and detectors. , 2011, The Review of scientific instruments.

[12]  W. Pernice,et al.  NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits , 2013, 1302.0786.

[13]  C. Roeloffzen,et al.  Compact and reconfigurable silicon nitride time-bin entanglement circuit , 2015, 1506.02758.

[14]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[15]  W. Munro,et al.  A monolithically integrated polarization entangled photon pair source on a silicon chip , 2012, Scientific Reports.

[16]  Yu-Bo Sheng,et al.  Distributed secure quantum machine learning. , 2017, Science bulletin.

[17]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[18]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[19]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[20]  Zach DeVito,et al.  Opt , 2017 .

[21]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[22]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[23]  B. Eggleton,et al.  Correlated photon pair generation in low-loss double-stripe silicon nitride waveguides , 2016, 1602.07915.

[24]  Wolfgang Tittel,et al.  Femtosecond Time-Bin Entangled Qubits for Quantum Communication , 2002 .

[25]  Weinfurter,et al.  Dense coding in experimental quantum communication. , 1996, Physical review letters.

[26]  Yin-Hai Li,et al.  On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire , 2017 .

[27]  S. Chu,et al.  Generation of multiphoton entangled quantum states by means of integrated frequency combs , 2016, Science.

[28]  W. Freude,et al.  In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration , 2018 .

[29]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[30]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.