Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation.

[1]  I. Brown,et al.  Empirical parameters for calculating cation–oxygen bond valences , 1976 .

[2]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1978, Archives of biochemistry and biophysics.

[3]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1978, Archives of biochemistry and biophysics.

[4]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[5]  N. Go Theoretical studies of protein folding. , 1983, Annual review of biophysics and bioengineering.

[6]  Axel T. Brunger,et al.  X-PLOR Version 3.1: A System for X-ray Crystallography and NMR , 1992 .

[7]  J. Thornton,et al.  Identification, classification, and analysis of beta‐bulges in proteins , 1993, Protein science : a publication of the Protein Society.

[8]  K. Wang,et al.  Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring. , 1993, Biophysical journal.

[9]  A. Pastore,et al.  Immunoglobulin-type domains of titin: same fold, different stability? , 1994, Biochemistry.

[10]  H. Erickson,et al.  Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[11]  M. Nayal,et al.  Predicting Ca(2+)-binding sites in proteins. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[12]  C Chothia,et al.  Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. , 1994, Journal of molecular biology.

[13]  Frederick P. Brooks,et al.  Computing smooth molecular surfaces , 1994, IEEE Computer Graphics and Applications.

[14]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[15]  A. Pastore,et al.  The folding and stability of titin immunoglobulin-like modules, with implications for the mechanism of elasticity. , 1995, Biophysical journal.

[16]  M Karplus,et al.  Theoretical studies of protein folding and unfolding. , 1995, Current opinion in structural biology.

[17]  Siegfried Labeit,et al.  Titins: Giant Proteins in Charge of Muscle Ultrastructure and Elasticity , 1995, Science.

[18]  A. Pastore,et al.  Tertiary structure of an immunoglobulin-like domain from the giant muscle protein titin: a new member of the I set. , 1995, Structure.

[19]  A. Mark,et al.  Computational approaches to study protein unfolding: Hen egg white lysozyme as a case study , 1995, Proteins.

[20]  A. Pastore,et al.  Secondary structure determination by NMR spectroscopy of an immunoglobulin-like domain from the giant muscle protein titin , 1995, Journal of biomolecular NMR.

[21]  P. Tavan,et al.  Ligand Binding: Molecular Mechanics Calculation of the Streptavidin-Biotin Rupture Force , 1996, Science.

[22]  W. Linke,et al.  Towards a molecular understanding of the elasticity of titin. , 1996, Journal of molecular biology.

[23]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[24]  Elastic properties of single titin molecules made visible through fluorescent F-actin binding. , 1996, Biochemical and biophysical research communications.

[25]  H. Granzier,et al.  Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics. , 1996, Biophysical journal.

[26]  Laxmikant V. Kalé,et al.  NAMD: a Parallel, Object-Oriented Molecular Dynamics Program , 1996, Int. J. High Perform. Comput. Appl..

[27]  A. Pastore,et al.  Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. , 1996, Structure.

[28]  J. Wolff,et al.  cDNA sequence of rabbit cardiac titin/connectin. , 1996, Advances in biophysics.

[29]  A. Li,et al.  Identification and characterization of the unfolding transition state of chymotrypsin inhibitor 2 by molecular dynamics simulations. , 1996, Journal of molecular biology.

[30]  Jan F. Prins,et al.  SMD: visual steering of molecular dynamics for protein design , 1996 .

[31]  K. Schulten,et al.  Binding pathway of retinal to bacterio-opsin: a prediction by molecular dynamics simulations. , 1997, Biophysical journal.

[32]  E. Evans,et al.  Dynamic strength of molecular adhesion bonds. , 1997, Biophysical journal.

[33]  M. Rief,et al.  Reversible unfolding of individual titin immunoglobulin domains by AFM. , 1997, Science.

[34]  W. Linke,et al.  The Giant Protein Titin: Emerging Roles in Physiology and Pathophysiology , 1997 .

[35]  K. Schulten,et al.  Extraction of Lipids from Phospholipid Membranes by Steered Molecular Dynamics , 1997 .

[36]  K. Maruyama,et al.  Connectin/titin, giant elastic protein of muscle , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[37]  R. M. Simmons,et al.  Elasticity and unfolding of single molecules of the giant muscle protein titin , 1997, Nature.

[38]  Frederick P. Brooks,et al.  Linearly Scalable Computation of Smooth Molecular Surfaces , 1997 .

[39]  J Tirado-Rives,et al.  Molecular dynamics simulations of the unfolding of barnase in water and 8 M aqueous urea. , 1997, Biochemistry.

[40]  V. Muñoz,et al.  Folding dynamics and mechanism of β-hairpin formation , 1997, Nature.

[41]  V Muñoz,et al.  Folding dynamics and mechanism of beta-hairpin formation. , 1997, Nature.

[42]  H. Granzier,et al.  Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction. , 1997, Biophysical journal.

[43]  S. Smith,et al.  Folding-unfolding transitions in single titin molecules characterized with laser tweezers. , 1997, Science.

[44]  K. Schulten,et al.  Molecular dynamics study of unbinding of the avidin-biotin complex. , 1997, Biophysical journal.

[45]  K Schulten,et al.  Reconstructing potential energy functions from simulated force-induced unbinding processes. , 1997, Biophysical journal.

[46]  Andres F. Oberhauser,et al.  The molecular elasticity of the extracellular matrix protein tenascin , 1998, Nature.

[47]  Klaus Schulten,et al.  Steered Molecular Dynamics , 1999, Computational Molecular Dynamics.