Modelling and mathematical problems related to tumor evolution and its interaction with the immune system

[1]  Avner Friedman,et al.  Analysis of a Mathematical Model of the Growth of Necrotic Tumors , 2001 .

[2]  A. Friedman,et al.  Analysis of a mathematical model of the effect of inhibitors on the growth of tumors. , 2000, Mathematical biosciences.

[3]  L. Preziosi,et al.  ADVECTION-DIFFUSION MODELS FOR SOLID TUMOUR EVOLUTION IN VIVO AND RELATED FREE BOUNDARY PROBLEM , 2000 .

[4]  Nicola Bellomo,et al.  Kinetic equations modelling population dynamics , 2000 .

[5]  P. Hahnfeldt,et al.  Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. , 1999, Cancer research.

[6]  J. King,et al.  Mathematical modelling of avascular-tumour growth. II: Modelling growth saturation. , 1999, IMA journal of mathematics applied in medicine and biology.

[7]  Zvia Agur,et al.  USING COMPUTER SIMULATIONS FOR EVALUATING THE EFFICACY OF BREAST CANCER CHEMOTHERAPY PROTOCOLS , 1999 .

[8]  Graeme J. Pettet,et al.  AVASCULAR TUMOUR DYNAMICS AND NECROSIS , 1999 .

[9]  Luigi Preziosi,et al.  Tumor/immune system competition with medically induced activation/deactivation , 1999 .

[10]  Markus R. Owen,et al.  MATHEMATICAL MODELLING OF MACROPHAGE DYNAMICS IN TUMOURS , 1999 .

[11]  Philippe Tracqui,et al.  MODELLING THREE-DIMENSIONAL GROWTH OF BRAIN TUMOURS FROM TIME SERIES OF SCANS , 1999 .

[12]  Nicola Bellomo,et al.  BIFURCATION ANALYSIS FOR A NONLINEAR SYSTEM OF INTEGRO-DIFFERENTIAL EQUATIONS MODELLING TUMOR-IMMUNE CELLS COMPETITION , 1999 .

[13]  Nicola Bellomo,et al.  Strategies of applied mathematics towards an immuno-mathematical theory on tumors and immune system interactions , 1998 .

[14]  R. Rosso,et al.  Adhesion of lipid tubules in an assembly , 1998, European Journal of Applied Mathematics.

[15]  D. Kirschner,et al.  Modeling immunotherapy of the tumor – immune interaction , 1998, Journal of mathematical biology.

[16]  J A Sherratt,et al.  Modelling the macrophage invasion of tumours: effects on growth and composition. , 1998, IMA journal of mathematics applied in medicine and biology.

[17]  H M Byrne,et al.  The importance of intercellular adhesion in the development of carcinomas. , 1997, IMA journal of mathematics applied in medicine and biology.

[18]  M. Chaplain,et al.  Free boundary value problems associated with the growth and development of multicellular spheroids , 1997, European Journal of Applied Mathematics.

[19]  M. Chaplain,et al.  Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. , 1997, IMA journal of mathematics applied in medicine and biology.

[20]  H M Byrne,et al.  The effect of time delays on the dynamics of avascular tumor growth. , 1997, Mathematical biosciences.

[21]  Helen M. Byrne,et al.  The role of growth factors in avascular tumour growth , 1997 .

[22]  D. Gaylor,et al.  A carcinogenesis model describing mutational events at the DNA adduct level. , 1997, Mathematical biosciences.

[23]  J. King,et al.  Mathematical modelling of avascular-tumour growth. , 1997, IMA journal of mathematics applied in medicine and biology.

[24]  J. Leith,et al.  Positive feedback and angiogenesis in tumor growth control. , 1997, Bulletin of mathematical biology.

[25]  M. Chaplain,et al.  Modelling the role of cell-cell adhesion in the growth and development of carcinomas , 1996 .

[26]  Luigi Preziosi,et al.  On a kinetic (cellular) theory for competition between tumors and the host immune system , 1996 .

[27]  M. Lo Schiavo,et al.  DISCRETE KINETIC CELLULAR MODELS OF TUMORS IMMUNE SYSTEM INTERACTIONS , 1996 .

[28]  E. Abel Clinical applications of research on angiogenesis , 1996 .

[29]  G. Kaiser,et al.  Wavelet Filtering with the Mellin Transform , 1996, math-ph/0108013.

[30]  W Düchting,et al.  Cancer: a challenge for control theory and computer modelling. , 1996, European journal of cancer.

[31]  J. Murray,et al.  A mathematical model of glioma growth: the effect of extent of surgical resection , 1996, Cell proliferation.

[32]  Mark A. J. Chaplain,et al.  A mathematical model of vascular tumour growth and invasion , 1996 .

[33]  J. Panetta,et al.  A mathematical model of periodically pulsed chemotherapy: tumor recurrence and metastasis in a competitive environment. , 1996, Bulletin of mathematical biology.

[34]  Luisa Arlotti,et al.  Qualitative analysis of a nonlinear integrodifferential equation modeling tumor-host dynamics , 1996 .

[35]  M. Chaplain Avascular growth, angiogenesis and vascular growth in solid tumours: The mathematical modelling of the stages of tumour development , 1996 .

[36]  L. Goldman,et al.  Preoperative assessment of patients with known or suspected coronary disease. , 1995, The New England journal of medicine.

[37]  M. Chaplain,et al.  Explicit solutions of a simplified model of capillary sprout growth during tumor angiogenesis , 1995 .

[38]  J. Suttles,et al.  T-Cell Signaling of Macrophage Activation: Cell Contact-Dependent and Cytokine Signals , 1995 .

[39]  J. Leith,et al.  Interlocking triads of growth control in tumors. , 1995, Bulletin of mathematical biology.

[40]  Luigi Preziosi,et al.  Modelling Mathematical Methods and Scientific Computation , 1995 .

[41]  J. Murray,et al.  A mathematical model of glioma growth: the effect of chemotherapy on spatio‐temporal growth , 1995, Cell proliferation.

[42]  G Taubes,et al.  Do immunologists dream of electric mice? , 1994, Science.

[43]  Nicola Bellomo,et al.  Dynamics of tumor interaction with the host immune system , 1994 .

[44]  G. W. Swan Role of optimal control theory in cancer chemotherapy. , 1990, Mathematical biosciences.

[45]  J P Freyer,et al.  Regrowth kinetics of cells from different regions of multicellular spheroids of four cell lines , 1989, Journal of cellular physiology.

[46]  R. Sutherland Cell and environment interactions in tumor microregions: the multicell spheroid model. , 1988, Science.

[47]  Z. Agur,et al.  The Effect of Drug Schedule on Responsiveness to Chemotherapy a , 1987 .

[48]  H. Byrne A comparison of the roles of localised and nonlocalised growth factors in solid tumour growth , 1999 .

[49]  H. M. Byrne,et al.  Necrosis and Apoptosis: Distinct Cell Loss Mechanisms in a Mathematical Model of Avascular Tumour Growth , 1998 .

[50]  Luigi Preziosi,et al.  On a kinetic theory of cytokine-mediated interaction between tumors and immune system , 1997 .

[51]  John A. Adam,et al.  General Aspects of Modeling Tumor Growth and Immune Response , 1997 .

[52]  J. Leith,et al.  Tumor Heterogeneity and Growth Control , 1997 .

[53]  Andreas Deutsch,et al.  Dynamics of cell and tissue motion , 1997 .

[54]  V. Kuznetsov Basic Models of Tumor-Immune System Interactions Identification, Analysis and Predictions , 1997 .

[55]  M. Chaplain,et al.  Mathematical modelling, simulation and prediction of tumour-induced angiogenesis. , 1996, Invasion & metastasis.

[56]  J. Sherratt,et al.  Biological inferences from a mathematical model for malignant invasion. , 1996, Invasion & metastasis.

[57]  S. Michelson A SPECIAL EDITION : MATHEMATICAL MODELING IN TUMOR GROWTH AND PROGRESSION , 1996 .

[58]  L D Greller,et al.  Tumor heterogeneity and progression: conceptual foundations for modeling. , 1996, Invasion & metastasis.

[59]  R J Jarvis,et al.  A mathematical analysis of a model for tumour angiogenesis , 1995, Journal of mathematical biology.

[60]  H M Byrne,et al.  Mathematical models for tumour angiogenesis: numerical simulations and nonlinear wave solutions. , 1995, Bulletin of mathematical biology.

[61]  J. Adam,et al.  Equilibrium model of a vascularized spherical carcinoma with central necrosis — Some properties of the solution , 1993, Journal of mathematical biology.

[62]  G. Webb,et al.  A nonlinear structured population model of tumor growth with quiescence , 1990, Journal of mathematical biology.

[63]  Benjamin Gompertz,et al.  XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. F. R. S. &c , 1825, Philosophical Transactions of the Royal Society of London.