Neuro-IG: A Hybrid System for Selection and Elimination of Predictor Variables and non Relevant Individuals

In this article we present the general architecture of a hybrid neuro-symbolic system for the selection and stepwise elimination of predictor variables and non-relevant individuals for the construction of a model. Our purpose is to design tools for extracting the relevant variables and the relevant individuals for an automatic training from data. The objective is to reduce the complexity of storage, therefore the complexity of calculation, and to gradually improve the performance of ordering, that is to say to arrive at a good quality training.

[1]  Russell Reed,et al.  Pruning algorithms-a survey , 1993, IEEE Trans. Neural Networks.

[2]  Rudy Setiono,et al.  Extracting rules from pruned networks for breast cancer diagnosis , 1996, Artif. Intell. Medicine.

[3]  R. Setiono Extracting Rules from Pruned Neural Networks for Breast Cancer Diagnosis , 1996 .

[4]  Kenneth W. Bauer,et al.  Improved feature screening in feedforward neural networks , 1996, Neurocomputing.

[5]  Anil K. Jain,et al.  Feature Selection: Evaluation, Application, and Small Sample Performance , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Ricco Rakotomalala,et al.  Arbres de Décision , 2005, Monde des Util. Anal. Données.

[7]  Wee Kheng Leow,et al.  FERNN: An Algorithm for Fast Extraction of Rules from Neural Networks , 2004, Applied Intelligence.

[8]  Jan M. Zytkow,et al.  Handbook of Data Mining and Knowledge Discovery , 2002 .

[9]  Paulo J. G. Lisboa,et al.  Minimal MLPs do not model the XOR logic , 2002, Neurocomputing.

[10]  Louis Wehenkel,et al.  A complete fuzzy decision tree technique , 2003, Fuzzy Sets Syst..

[11]  Anil K. Jain,et al.  Artificial neural networks for feature extraction and multivariate data projection , 1995, IEEE Trans. Neural Networks.

[12]  T.Warren Liao,et al.  An integrated database and expert system for failure mechanism identification: Part I—automated knowledge acquisition , 1999 .

[13]  Ian Witten,et al.  Data Mining , 2000 .

[14]  Surajit Chaudhuri,et al.  Integration of Data Mining and Relational Databases , 2000 .

[15]  Gregory Piatetsky-Shapiro,et al.  The KDD process for extracting useful knowledge from volumes of data , 1996, CACM.

[16]  Régis Beuscart,et al.  From Data Collection to Knowledge Data Discovery: A Medical Application of Data Mining , 2001, MedInfo.

[17]  Sabine Loudcher,et al.  FUSINTER: A Method for Discretization of Continuous Attributes , 1998, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[18]  R. Quinlan,et al.  Decision tree discovery , 1999 .

[19]  Franz J. Kurfess Neural Networks and Structured Knowledge: Rule Extraction and Applications , 2004, Applied Intelligence.

[20]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[21]  Koen Vanhoof,et al.  Comparison of some AI and statistical classification methods for a marketing case , 1997 .

[22]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[23]  Ron Kohavi,et al.  Supervised and Unsupervised Discretization of Continuous Features , 1995, ICML.

[24]  Chandrika Kamath,et al.  Inducing oblique decision trees with evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[25]  A. Herr,et al.  Identifaction of Bat Echolocation Calls Using a Decision Classification System. , 1997 .

[26]  Jean-Gabriel Ganascia Improvement and Refinement of the Learning Bias Semantic , 1988, ECAI.

[27]  Surajit Chaudhuri Data Mining and Database Systems: Where is the Intersection? , 1998, IEEE Data Eng. Bull..

[28]  Hongjun Lu,et al.  Effective Data Mining Using Neural Networks , 1996, IEEE Trans. Knowl. Data Eng..

[29]  Hisao Ishibuchi,et al.  Three-objective genetics-based machine learning for linguistic rule extraction , 2001, Inf. Sci..

[30]  Krysia Broda,et al.  Symbolic knowledge extraction from trained neural networks: A sound approach , 2001, Artif. Intell..

[31]  Fernando Santos Osório,et al.  INSS: A hybrid system for constructive machine learning , 1999, Neurocomputing.

[32]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[33]  Ricco Rakotomalala TANAGRA, une plate-forme d'expérimentation pour la fouille de données , 2005, Monde des Util. Anal. Données.

[34]  I-Nong Lee,et al.  Important variable selection techniques with multiple solutions for medical information applications , 2002, Medical informatics and the Internet in medicine.

[35]  C. James Li,et al.  DIAGNOSTIC RULE EXTRACTION FROM TRAINED FEEDFORWARD NEURAL NETWORKS , 2002 .

[36]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..

[37]  Roberto Battiti,et al.  Using mutual information for selecting features in supervised neural net learning , 1994, IEEE Trans. Neural Networks.

[38]  Wei-Yin Loh,et al.  A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms , 2000, Machine Learning.

[39]  Giovanna Castellano,et al.  Variable selection using neural-network models , 2000, Neurocomputing.

[40]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[41]  Jude W. Shavlik,et al.  Using neural networks for data mining , 1997, Future Gener. Comput. Syst..

[42]  Dayne Freitag,et al.  Machine Learning for Information Extraction in Informal Domains , 2000, Machine Learning.

[43]  Bingchiang Jeng,et al.  FILM: a fuzzy inductive learning method for automated knowledge acquisition , 1997, Decis. Support Syst..

[44]  Andreas Nürnberger,et al.  A hierarchical recurrent neuro-fuzzy model for system identification , 2003, Int. J. Approx. Reason..

[45]  Networks of Neurons , 1999, Current Biology.

[46]  I-Nong Lee,et al.  Appropriate medical data categorization for data mining classification techniques , 2002, Medical informatics and the Internet in medicine.

[47]  Marc Sebban,et al.  A data-mining approach to spacer oligonucleotide typing of Mycobacterium tuberculosis , 2002, Bioinform..

[48]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[49]  Kathleen Steinhöfel,et al.  Artificial intelligence in medicine , 1989 .

[50]  Hongjun Lu,et al.  NeuroRule: A Connectionist Approach to Data Mining , 1995, VLDB.

[51]  Fadila Bentayeb,et al.  Decision Tree Modeling with Relational Views , 2002, ISMIS.

[52]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Feature Subset Selection , 1977, IEEE Transactions on Computers.

[53]  Koji Fujimoto,et al.  Applying GMDH algorithm to extract rules from examples , 2003 .

[54]  Fabrice Muhlenbach,et al.  Separability Index in Supervised Learning , 2002, PKDD.

[55]  Keng Siau,et al.  A review of data mining techniques , 2001, Ind. Manag. Data Syst..

[56]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[57]  Andrew Tomkins,et al.  Mining and knowledge discovery from the Web , 2004, 7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings..

[58]  Giovanna Castellano,et al.  A neuro-fuzzy network to generate human-understandable knowledge from data , 2002, Cognitive Systems Research.

[59]  Włodzisław Duch,et al.  Methodology of extraction , optimization and application of logical rules , 1999 .

[60]  Huan Liu,et al.  Understanding Neural Networks via Rule Extraction , 1995, IJCAI.