Estimation of the Hurst parameter from discrete noisy data
暂无分享,去创建一个
[1] Patrice Abry,et al. A Wavelet-Based Joint Estimator of the Parameters of Long-Range Dependence , 1999, IEEE Trans. Inf. Theory.
[2] B. Roynette,et al. Quelques espaces fonctionnels associés à des processus gaussiens , 1993 .
[3] Patrice Abry,et al. Meaningful MRA initialization for discrete time series , 2000, Signal Process..
[4] R. Dahlhaus. Efficient parameter estimation for self-similar processes , 1989, math/0607078.
[5] F. Roueff,et al. Semi-parametric Estimation of the Hölder Exponent of a Stationary Gaussian Process with Minimax Rates , 2001 .
[6] Patrice Abry,et al. Stochastic integral representation and properties of the wavelet coefficients of linear fractional stable motion , 2000 .
[7] Richard A. Davis,et al. Time Series: Theory and Methods (2nd ed.). , 1992 .
[8] T. Tony Cai,et al. Optimal adaptive estimation of a quadratic functional , 1996 .
[9] Richard A. Davis,et al. Time Series: Theory and Methods , 2013 .
[10] M. Taqqu,et al. Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .
[11] Carenne Ludeña. Minimum Contrast Estimation for Fractional Diffusions , 2004 .
[12] S. Jaffard,et al. Elliptic gaussian random processes , 1997 .
[13] Evaluation for convergence of wavelet-based estimators on fractional Brownian motion , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[14] Gabriel Lang,et al. Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .
[15] Jean Jacod,et al. Diffusions with measurement errors. I. Local Asymptotic Normality , 2001 .
[16] A.H. Tewfik,et al. Correlation structure of the discrete wavelet coefficients of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.
[17] Gustavo A. Hirchoren,et al. On the optimal number of scales in estimation of fractal signals using wavelets and filter banks , 1997, Signal Process..
[18] M. Taqqu,et al. Central limit theorems for quadratic forms in random variables having long-range dependence , 1987 .
[19] M. Hoffmann,et al. Stochastic volatility and fractional Brownian motion , 2004 .
[20] Y. Meyer,et al. Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motion , 1999 .
[21] P. Whittle,et al. Estimation and information in stationary time series , 1953 .
[22] Ghislaine Gayraud,et al. Wavelet methods to estimate an integrated quadratic functional: Adaptivity and asymptotic law , 1999 .