Estimation of the Hurst parameter from discrete noisy data

We estimate the Hurst parameter $H$ of a fractional Brownian motion from discrete noisy data observed along a high frequency sampling scheme. The presence of systematic experimental noise makes recovery of $H$ more difficult since relevant information is mostly contained in the high frequencies of the signal. We quantify the difficulty of the statistical problem in a min-max sense: we prove that the rate $n^{-1/(4H+2)}$ is optimal for estimating $H$ and propose rate optimal estimators based on adaptive estimation of quadratic functionals.

[1]  Patrice Abry,et al.  A Wavelet-Based Joint Estimator of the Parameters of Long-Range Dependence , 1999, IEEE Trans. Inf. Theory.

[2]  B. Roynette,et al.  Quelques espaces fonctionnels associés à des processus gaussiens , 1993 .

[3]  Patrice Abry,et al.  Meaningful MRA initialization for discrete time series , 2000, Signal Process..

[4]  R. Dahlhaus Efficient parameter estimation for self-similar processes , 1989, math/0607078.

[5]  F. Roueff,et al.  Semi-parametric Estimation of the Hölder Exponent of a Stationary Gaussian Process with Minimax Rates , 2001 .

[6]  Patrice Abry,et al.  Stochastic integral representation and properties of the wavelet coefficients of linear fractional stable motion , 2000 .

[7]  Richard A. Davis,et al.  Time Series: Theory and Methods (2nd ed.). , 1992 .

[8]  T. Tony Cai,et al.  Optimal adaptive estimation of a quadratic functional , 1996 .

[9]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[10]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[11]  Carenne Ludeña Minimum Contrast Estimation for Fractional Diffusions , 2004 .

[12]  S. Jaffard,et al.  Elliptic gaussian random processes , 1997 .

[13]  Evaluation for convergence of wavelet-based estimators on fractional Brownian motion , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[14]  Gabriel Lang,et al.  Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .

[15]  Jean Jacod,et al.  Diffusions with measurement errors. I. Local Asymptotic Normality , 2001 .

[16]  A.H. Tewfik,et al.  Correlation structure of the discrete wavelet coefficients of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[17]  Gustavo A. Hirchoren,et al.  On the optimal number of scales in estimation of fractal signals using wavelets and filter banks , 1997, Signal Process..

[18]  M. Taqqu,et al.  Central limit theorems for quadratic forms in random variables having long-range dependence , 1987 .

[19]  M. Hoffmann,et al.  Stochastic volatility and fractional Brownian motion , 2004 .

[20]  Y. Meyer,et al.  Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motion , 1999 .

[21]  P. Whittle,et al.  Estimation and information in stationary time series , 1953 .

[22]  Ghislaine Gayraud,et al.  Wavelet methods to estimate an integrated quadratic functional: Adaptivity and asymptotic law , 1999 .