On the influence of different stabilisation methods for the incompressible Navier-Stokes equations

Two different stabilisation methods for the incompressible Navier-Stokes equations are investigated. Both methods are based on a special interpolation scheme for the velocity components but with different effects and behaviour. They introduce varying errors in the continuity equation but also the derivation of terms contributing to the special interpolation have a great influence on the quality of the results. By means of various examples the two stabilisation methods and their contributing parts are compared.

[1]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[2]  P. Wesseling Principles of Computational Fluid Dynamics , 2000 .

[3]  Willi Jäger,et al.  High Performance Computing in Science and Engineering ’98 , 1999 .

[4]  G. D. Raithby,et al.  Skew upstream differencing schemes for problems involving fluid flow , 1976 .

[5]  S. M. H. Karimian,et al.  Pressure-based control-volume finite element method for flow at all speeds , 1995 .

[6]  R. Alexander Diagonally implicit runge-kutta methods for stiff odes , 1977 .

[7]  Gabriel Wittum,et al.  Large-Eddy Simulation and Multigrid Methods , 2001 .

[8]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[9]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[10]  Willi Jäger,et al.  High Performance Computing in Science and Engineering 2000 , 2001, Springer Berlin Heidelberg.

[11]  H. Rentz-Reichert,et al.  UG – A flexible software toolbox for solving partial differential equations , 1997 .

[12]  Gerry E. Schneider,et al.  A SKEWED, POSITIVE INFLUENCE COEFFICIENT UPWINDING PROCEDURE FOR CONTROL-VOLUME-BASED FINITE-ELEMENT CONVECTION-DIFFUSION COMPUTATION , 1986 .

[13]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[14]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[15]  Sandra Nägele,et al.  Mehrgitterverfahren für die inkompressiblen Navier-Stokes Gleichungen im laminaren und turbulenten Regime unter Berücksichtigung verschiedener Stabilisierungsmethoden , 2003 .

[16]  S. M. H. Karimian,et al.  Advances in control-volume-based finite-element methods for compressible flows , 1994 .

[17]  Gabriel Wittum,et al.  A Parallel Software-Platform for Solving Problems of Partial Differential Equations using Unstructured Grids and Adaptive Multigrid Methods , 1999 .

[18]  Gerry E. Schneider,et al.  Control Volume Finite-Element Method for Heat Transfer and Fluid Flow Using Colocated Variables— 1. Computational Procedure , 1987 .

[19]  F. Wubs Notes on numerical fluid mechanics , 1985 .

[20]  C. Rhie,et al.  Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .

[21]  Gabriel Wittum,et al.  Advances in High-Performance Computing: Multigrid Methods for Partial Differential Equations and its Applications , 2000 .