Classification of three-dimensional quadratic diffeomorphisms with constant Jacobian
暂无分享,去创建一个
[1] R. Devaney. Reversible diffeomorphisms and flows , 1976 .
[2] L. Shilnikov,et al. Пример дикого странного аттрактора@@@An example of a wild strange attractor , 1998 .
[3] Andrey Shilnikov,et al. On bifurcations of the Lorenz attractor in the Shimizu-Morioka model , 1993 .
[4] I. I. Ovsyannikov,et al. CHAOTIC DYNAMICS OF THREE-DIMENSIONAL H ENON MAPS THAT ORIGINATE FROM A HOMOCLINIC BIFURCATION , 2005, nlin/0510061.
[5] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[6] J. Meiss,et al. Quadratic volume preserving maps , 1997, chao-dyn/9706001.
[7] Étienne Forest,et al. Beam Dynamics: A New Attitude and Framework , 1998 .
[8] Dmitry Turaev,et al. An example of a wild strange attractor , 1998 .
[9] Guanrong Chen. Controlling Chaos and Bifurcations in Engineering Systems , 1999 .
[10] H. Bass,et al. The Jacobian conjecture: Reduction of degree and formal expansion of the inverse , 1982 .
[11] S. Mascolo,et al. A system theory approach for designing cryptosystems based on hyperchaos , 1999 .
[12] Dmitry Turaev,et al. Three-Dimensional HÉnon-like Maps and Wild Lorenz-like attractors , 2005, Int. J. Bifurc. Chaos.
[13] G. Baier,et al. Maximum hyperchaos in generalized Hénon maps , 1990 .
[14] E. Courant,et al. Theory of the Alternating-Gradient Synchrotron , 1958 .