Minimizing risk on a fleet mix problem with a multiobjective evolutionary algorithm

We apply the non-dominated sorting genetic algorithm-II (NSGA-II) to perform a multiobjective optimization of the Stochastic Fleet Estimation (SaFE) model. SaFE is a Monte Carlo-based model which generates a vehicle fleet based on the set of requirements that the fleet is supposed to accomplish. We search for Pareto-optimal combinations of valid platform-assignments for a list of tasks, which can be applied to complete scenarios output by SaFE. Solutions are evaluated on three objectives, with the goal of minimizing fleet cost, total task duration time, and the risk that a solution will not be able to accomplish possible future scenarios.

[1]  Slawomir Wesolkowski,et al.  The Stochastic Fleet Estimation (SaFE) model , 2008, SpringSim '08.

[2]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[3]  Hussein A. Abbass,et al.  IDENTIFYING THE FLEET MIX IN A MILITARY SETTING , 2006 .

[4]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[5]  Hussein A. Abbass,et al.  A Scenario-based Evolutionary Scheduling Approach for Assessing Future Supply Chain Fleet Capabilities , 2007, Evolutionary Scheduling.

[6]  Paul K. Davis,et al.  Enhancing Strategic Planning with Massive Scenario Generation: Theory and Experiments , 2007 .

[7]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[8]  Slawomir Wesolkowski,et al.  Fleet mix computation using evolutionary multiobjective optimization , 2009, 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making(MCDM).

[9]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[10]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[11]  S. Wesolkowski,et al.  Optimizing the stochastic fleet estimation model using evolutionary computation , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[12]  André Langevin,et al.  Logistics systems : design and optimization , 2005 .

[13]  Hussein A. Abbass,et al.  A MULTI-OBJECTIVE RISK-BASED FRAMEWORK FOR MISSION CAPABILITY PLANNING , 2009 .

[14]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[15]  David P. Morton,et al.  Optimizing Military Airlift , 2002, Oper. Res..

[16]  Roger Sauter,et al.  Introduction to Probability and Statistics for Engineers and Scientists , 2005, Technometrics.