Modeling diffusion in random heterogeneous media: Data-driven models, stochastic collocation and the variational multiscale method

In recent years, there has been intense interest in understanding various physical phenomena in random heterogeneous media. Any accurate description/simulation of a process in such media has to satisfactorily account for the twin issues of randomness as well as the multilength scale variations in the material properties. An accurate model of the material property variation in the system is an important prerequisite towards complete characterization of the system response. We propose a general methodology to construct a data-driven, reduced-order model to describe property variations in realistic heterogeneous media. This reduced-order model then serves as the input to the stochastic partial differential equation describing thermal diffusion through random heterogeneous media. A decoupled scheme is used to tackle the problems of stochasticity and multilength scale variations in properties. A sparse-grid collocation strategy is utilized to reduce the solution of the stochastic partial differential equation to a set of deterministic problems. A variational multiscale method with explicit subgrid modeling is used to solve these deterministic problems. An illustrative example using experimental data is provided to showcase the effectiveness of the proposed methodology.

[1]  Phadeon-Stelios Koutsourelakis,et al.  Probabilistic characterization and simulation of multi-phase random media , 2006 .

[2]  E. Garboczi,et al.  Elastic properties of a tungsten–silver composite by reconstruction and computation , 1999, cond-mat/9901320.

[3]  Christian Soize,et al.  Maximum likelihood estimation of stochastic chaos representations from experimental data , 2006 .

[4]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[5]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[6]  Daniel M. Tartakovsky,et al.  A Two-Scale Nonperturbative Approach to Uncertainty Analysis of Diffusion in Random Composites , 2004, Multiscale Model. Simul..

[7]  Lise Arleth,et al.  Gaussian random fields with two level-cuts—Model for asymmetric microemulsions with nonzero spontaneous curvature? , 2001 .

[8]  N. Zabaras,et al.  Using stochastic analysis to capture unstable equilibrium in natural convection , 2005 .

[9]  George Deodatis,et al.  Simulation of Multidimensional Binary Random Fields with Application to Modeling of Two-Phase Random Media , 2006 .

[10]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[11]  S. Torquato,et al.  Generating microstructures with specified correlation functions , 2001 .

[12]  E. Weinan,et al.  Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .

[13]  Roger G. Ghanem,et al.  On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data , 2006, J. Comput. Phys..

[14]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[15]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[16]  José M. Martínez-Esnaola,et al.  Simulation of liquid phase sintering using the Monte Carlo method , 2004 .

[17]  George M. Homsy,et al.  Viscous fingering in porous media , 1987 .

[18]  N. Zabaras,et al.  A level set simulation of dendritic solidification with combined features of front-tracking and fixed-domain methods , 2006 .

[19]  R. Tempone,et al.  A sparse grid stochastic collocation method for elliptic partial differential equations with random input data , 2006 .

[20]  Dongbin Xiu,et al.  Performance Evaluation of Generalized Polynomial Chaos , 2003, International Conference on Computational Science.

[21]  Nicholas Zabaras,et al.  A maximum entropy approach for property prediction of random microstructures , 2006 .

[22]  Baskar Ganapathysubramanian,et al.  Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..

[23]  Nicholas Zabaras,et al.  Computing property variability of polycrystals induced by grain size and orientation uncertainties , 2007 .

[24]  Lijian Tan,et al.  A level set simulation of dendritic solidification of multi-component alloys , 2007, J. Comput. Phys..

[25]  Giancarlo Sangalli,et al.  Capturing Small Scales in Elliptic Problems Using a Residual-Free Bubbles Finite Element Method , 2003, Multiscale Model. Simul..

[26]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[27]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[28]  Barbara I. Wohlmuth,et al.  Algorithm 847: Spinterp: piecewise multilinear hierarchical sparse grid interpolation in MATLAB , 2005, TOMS.

[29]  R. Ghanem Probabilistic characterization of transport in heterogeneous media , 1998 .

[30]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[32]  Daniel M. Tartakovsky,et al.  Probabilistic reconstruction of geologic facies , 2004 .

[33]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[34]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[35]  Salvatore Torquato,et al.  Efficient simulation technique to compute effective properties of heterogeneous media , 1989 .

[36]  Roberts,et al.  Structure-property correlations in model composite materials. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[37]  Nicholas Zabaras,et al.  Classification and reconstruction of three-dimensional microstructures using support vector machines , 2005 .

[38]  I. Babuska,et al.  Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation , 2005 .

[39]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[40]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[41]  Daniel M. Tartakovsky,et al.  Mean Flow in composite porous media , 2000 .

[42]  O. Sherby,et al.  ELASTIC PROPERTIES OF A TUNGSTEN-SILVER COMPOSITE ABOVE AND BELOW THE MELTING POINT OF SILVER , 1965 .

[43]  A. Sarkar,et al.  Mid-frequency structural dynamics with parameter uncertainty , 2001 .

[44]  Nicholas Zabaras,et al.  A stochastic variational multiscale method for diffusion in heterogeneous random media , 2006, J. Comput. Phys..

[45]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[46]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[47]  Salvatore Torquato,et al.  STATISTICAL DESCRIPTION OF MICROSTRUCTURES , 2002 .

[48]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[49]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[50]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[51]  Todd Arbogast,et al.  A two-scale numerical subgrid technique for waterflood simulations , 2002 .

[52]  S. Torquato,et al.  Reconstructing random media. II. Three-dimensional media from two-dimensional cuts , 1998 .

[53]  Daniel M. Tartakovsky,et al.  Groundwater flow in heterogeneous composite aquifers , 2002 .

[54]  D. Xiu Efficient collocational approach for parametric uncertainty analysis , 2007 .

[55]  I. Babuska,et al.  GENERALIZED FINITE ELEMENT METHODS — MAIN IDEAS, RESULTS AND PERSPECTIVE , 2004 .

[56]  S. Torquato,et al.  Reconstructing random media , 1998 .