Noise and synchronization in pairs of beating eukaryotic flagella.

It has long been conjectured that hydrodynamic interactions between beating eukaryotic flagella underlie their ubiquitous forms of synchronization; yet there has been no experimental test of this connection. The biflagellate alga Chlamydomonas is a simple model for such studies, as its two flagella are representative of those most commonly found in eukaryotes. Using micromanipulation and high-speed imaging, we show that the flagella of a C. reinhardtii cell present periods of synchronization interrupted by phase slips. The dynamics of slips and the statistics of phase-locked intervals are consistent with a low-dimensional stochastic model of hydrodynamically coupled oscillators, with a noise amplitude set by the intrinsic fluctuations of single flagellar beats.

[1]  H. Berg The rotary motor of bacterial flagella. , 2003, Annual review of biochemistry.

[2]  J. Rosenbaum,et al.  Flagellar elongation and shortening in Chlamydomonas. IV. Effects of flagellar detachment, regeneration, and resorption on the induction of flagellar protein synthesis , 1978, The Journal of cell biology.

[3]  G. Pazour,et al.  Proteomic analysis of a eukaryotic cilium , 2005, The Journal of cell biology.

[4]  C. Dunand,et al.  Plant Photoreceptors: Phylogenetic Overview , 2005, Journal of Molecular Evolution.

[5]  Claire Ainsworth,et al.  Cilia: Tails of the unexpected , 2007, Nature.

[6]  M. Cosentino Lagomarsino,et al.  Metachronal waves for deterministic switching two-state oscillators with hydrodynamic interaction. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  P. McClintock Synchronization:a universal concept in nonlinear science , 2003 .

[8]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[9]  K. E. Machin The control and synchronization of flagellar movement , 1963, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  Peter Lenz,et al.  Collective effects in ciliar arrays , 2006, Physical biology.

[11]  Rappold,et al.  Human Molecular Genetics , 1996, Nature Medicine.

[12]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[13]  O. Piro,et al.  Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[15]  U. Rüffer,et al.  Flagellar photoresponses ofChlamydomonascells held on micropipettes: II. Change in flagellar beat pattern: Flagellar Beat Pattern Change inchlamydomonas , 1991 .

[16]  Flagellar coordination in Chlamydomonas cells held on micropipettes. , 1998, Cell motility and the cytoskeleton.

[17]  G. Taylor Analysis of the swimming of microscopic organisms , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[18]  Boris Guirao,et al.  Spontaneous creation of macroscopic flow and metachronal waves in an array of cilia. , 2007, Biophysical journal.

[19]  M. Hirono,et al.  Phototactic activity in Chlamydomonas 'non-phototactic' mutants deficient in Ca2+-dependent control of flagellar dominance or in inner-arm dynein , 2005, Journal of Cell Science.

[20]  D. Kirk,et al.  Protein synthetic patterns during the asexual life cycle of Volvox carteri. , 1983, Developmental biology.

[21]  U. Rüffer,et al.  Comparison of the beating of cis‐ and trans‐flagella of Chlamydomonas cells held on micropipettes , 1987 .

[22]  I. Joint,et al.  Rapid spatiotemporal patterning of cytosolic Ca2+ underlies flagellar excision in Chlamydomonas reinhardtii. , 2007, The Plant journal : for cell and molecular biology.

[23]  R. Kamiya,et al.  Intrinsic difference in beat frequency between the two flagella of Chlamydomonas reinhardtii. , 1987, Experimental cell research.

[24]  T. Strachan,et al.  Human Molecular Genetics 2 , 1997 .

[25]  N. Heintz,et al.  To beat or not to beat: roles of cilia in development and disease. , 2003, Human molecular genetics.

[26]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[27]  Bruno Eckhardt,et al.  Synchronization, phase locking, and metachronal wave formation in ciliary chains. , 2008, Chaos.

[28]  U. Rüffer,et al.  Flagellar photoresponses of Chlamydomonas cells held on micropipettes: II. Change in flagellar beat pattern , 1990 .

[29]  S. Gueron,et al.  Energetic considerations of ciliary beating and the advantage of metachronal coordination. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. Gollub,et al.  Chlamydomonas Swims with Two “Gears” in a Eukaryotic Version of Run-and-Tumble Locomotion , 2009, Science.

[31]  Oleg A. Sineshchekov,et al.  Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Frank Jülicher,et al.  Hydrodynamic flow patterns and synchronization of beating cilia. , 2005, Physical review letters.

[33]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[34]  H. Jürgensen Synchronization , 2021, Inf. Comput..