A scoping study of electric and magnetic field energy harvesting for wireless sensor networks in power system applications

This paper explores the existing energy harvesting technologies, their stage of maturity and their feasibility for powering sensor nodes. It contains a study of the energy requirements of the sensor nodes that are a part of the commercial domain. Further, it investigates methods and concepts for harvesting the energy from electric and magnetic fields present near utility assets through laboratory experimentation. The flux concentrator based approach that scavenges the magnetic field was considered to be the most promising solution providing nearly 250mW of power sufficient to power a sensor node.

[1]  Mani B. Srivastava,et al.  Design considerations for solar energy harvesting wireless embedded systems , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[2]  Paul K. Wright,et al.  Energy scavenging power sources for household electrical monitoring , 2008 .

[3]  Yi Yang,et al.  A Survey on Technologies for Implementing Sensor Networks for Power Delivery Systems , 2007, 2007 IEEE Power Engineering Society General Meeting.

[4]  Joseph A. Paradiso,et al.  Energy scavenging for mobile and wireless electronics , 2005, IEEE Pervasive Computing.

[5]  Jan M. Rabaey,et al.  A 1.9GHz RF Transmit Beacon using Environmentally Scavenged Energy , 2003 .

[6]  Ingo Stark Thermal Energy Harvesting with Thermo Life , 2006 .

[7]  Loreto Mateu,et al.  Review of energy harvesting techniques and applications for microelectronics (Keynote Address) , 2005, SPIE Microtechnologies.

[8]  L. Mateu,et al.  Human Body Energy Harvesting Thermogenerator for Sensing Applications , 2007, 2007 International Conference on Sensor Technologies and Applications (SENSORCOMM 2007).

[9]  M. Gasulla,et al.  A Review of Commercial Energy Harvesters for Autonomous Sensors , 2007, 2007 IEEE Instrumentation & Measurement Technology Conference IMTC 2007.

[10]  Rajeevan Amirtharajah,et al.  Self-powered signal processing using vibration-based power generation , 1998, IEEE J. Solid State Circuits.

[11]  Hartmut Ritter,et al.  Utilizing solar power in wireless sensor networks , 2003, 28th Annual IEEE International Conference on Local Computer Networks, 2003. LCN '03. Proceedings..

[12]  J. M. Fournier,et al.  Energy Conversion Using New Thermoelectric Generator , 2007, ArXiv.

[13]  Daniel J. Inman,et al.  Recharging Batteries using Energy Harvested from Thermal Gradients , 2007 .

[14]  Jan M. Rabaey,et al.  Power Sources for Wireless Sensor Networks , 2004, EWSN.

[15]  R. B. Yates,et al.  Analysis Of A Micro-electric Generator For Microsystems , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[16]  Roy Want,et al.  An introduction to RFID technology , 2006, IEEE Pervasive Computing.

[17]  Anantha Chandrakasan,et al.  Vibration-to-electric energy conversion , 1999, Proceedings. 1999 International Symposium on Low Power Electronics and Design (Cat. No.99TH8477).

[18]  M. Stordeur,et al.  New micro thermoelectric devices based on bismuth telluride-type thin solid films , 1999, Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407).

[19]  Marcos Augusto M. Vieira,et al.  Survey on wireless sensor network devices , 2003, EFTA 2003. 2003 IEEE Conference on Emerging Technologies and Factory Automation. Proceedings (Cat. No.03TH8696).

[20]  Alex Elvin,et al.  A self-powered mechanical strain energy sensor , 2001 .

[21]  Wendi Heinzelman,et al.  Energy-efficient communication protocol for wireless microsensor networks , 2000, Proceedings of the 33rd Annual Hawaii International Conference on System Sciences.

[22]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[23]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.

[24]  Ingo Stark,et al.  Invited Talk: Thermal Energy Harvesting with Thermo Life , 2006, International Workshop on Wearable and Implantable Body Sensor Networks (BSN'06).

[25]  Joseph M. Kahn,et al.  An autonomous 16 mm/sup 3/ solar-powered node for distributed wireless sensor networks , 2002, Proceedings of IEEE Sensors.

[26]  John Anderson,et al.  Wireless sensor networks for habitat monitoring , 2002, WSNA '02.

[27]  David Michael Rowe,et al.  The design and fabrication of a miniature thermoelectric generator using MOS processing techniques , 1994 .

[28]  Anantha Chandrakasan,et al.  Low-power wireless sensor networks , 2001, VLSI Design 2001. Fourteenth International Conference on VLSI Design.

[29]  Daniel J. Inman,et al.  Use of piezoelectric energy harvesting devices for charging batteries , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[30]  Jan M. Rabaey,et al.  Improving power output for vibration-based energy scavengers , 2005, IEEE Pervasive Computing.

[31]  Miodrag Potkonjak,et al.  Power efficient organization of wireless sensor networks , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[32]  Gabor Karsai,et al.  Smart Dust: communicating with a cubic-millimeter computer , 2001 .

[33]  Eric M. Yeatman,et al.  Advances In Power Sources For Wireless Sensor Nodes , 2004 .

[34]  Michael Goldfarb,et al.  On the Efficiency of Electric Power Generation With Piezoelectric Ceramic , 1999 .

[35]  M. Stordeur,et al.  Low power thermoelectric generator-self-sufficient energy supply for micro systems , 1997, XVI ICT '97. Proceedings ICT'97. 16th International Conference on Thermoelectrics (Cat. No.97TH8291).