Delaunay triangulations of imprecise pointsin linear time after preprocessing
暂无分享,去创建一个
[1] R. Sokal,et al. A New Statistical Approach to Geographic Variation Analysis , 1969 .
[2] Francis Y. L. Chin,et al. Finding the Constrained Delaunay Triangulation and Constrained Voronoi Diagram of a Simple Polygon in Linear Time , 1999, SIAM J. Comput..
[3] Leonidas J. Guibas,et al. Epsilon geometry: building robust algorithms from imprecise computations , 1989, SCG '89.
[4] Ali Asghar Khanban,et al. Basic algorithms in computational geometry with imprecise input , 2005 .
[5] Maarten Löffler,et al. Largest bounding box, smallest diameter, and related problems on imprecise points , 2007, Comput. Geom..
[6] Anthony P. Leclerc,et al. Correct Delaunay Triangulation in the Presence of Inexact Inputs and Arithmetic , 2000, Reliab. Comput..
[7] Frank Weller. Stability of voronoi neighborship under perturbations of the sites , 1997, CCCG.
[8] Maarten Löffler,et al. Largest and Smallest Convex Hulls for Imprecise Points , 2010, Algorithmica.
[9] Joseph S. B. Mitchell,et al. Practical methods for approximate geometric pattern matching under rigid motions: (preliminary version) , 1994, SCG '94.
[10] Maarten Löffler,et al. Largest Bounding Box, Smallest Diameter, and Related Problems on Imprecise Points , 2007, WADS.
[11] M. Iri,et al. Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.
[12] Patric R. J. Östergård,et al. Dense packings of congruent circles in a circle , 1998, Discret. Math..
[13] Wolfram Luther,et al. Reliable Distance and Intersection Computation Using Finite Precision Geometry , 2003, Numerical Software with Result Verification.
[14] Francis Y. L. Chin,et al. Finding the Medial Axis of a Simple Polygon in Linear Time , 1995, ISAAC.
[15] Leonidas J. Guibas,et al. A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1989, Discret. Comput. Geom..
[16] Abbas Edalat,et al. Computability of Partial Delaunay Triangulation and Voronoi Diagram , 2002, CCA.
[17] Kurt Mehlhorn,et al. LEDA: a platform for combinatorial and geometric computing , 1997, CACM.
[18] Herbert Edelsbrunner,et al. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.
[19] Bernard Chazelle. Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..
[20] R. Seidel. A Method for Proving Lower Bounds for Certain Geometric Problems , 1984 .
[21] Jonathan Richard Shewchuk,et al. Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..
[22] Manuel Abellanas,et al. Structural Tolerance and Delaunay Triangulation , 1999, Inf. Process. Lett..
[23] Jack Snoeyink,et al. Almost-Delaunay simplices: Robust neighbor relations for imprecise 3D points using CGAL , 2007, Comput. Geom..
[24] Ivan Stojmenovic,et al. Localized LMST and RNG based minimum-energy broadcast protocols in ad hoc networks , 2005, Ad Hoc Networks.
[25] M. Iri,et al. Two Design Principles of Geometric Algorithms in Finite-Precision Arithmetic , 1989 .
[26] Chee-Keng Yap,et al. Robust Geometric Computation , 2016, Encyclopedia of Algorithms.
[27] Pierre Alliez,et al. Computational geometry algorithms library , 2008, SIGGRAPH '08.
[28] Steven Fortune,et al. Numerical stability of algorithms for 2-d Delaunay triangulations , 1995, Int. J. Comput. Geom. Appl..
[29] Jack Snoeyink,et al. Almost-Delaunay simplices: nearest neighbor relations for imprecise points , 2004, SODA '04.
[30] Abbas Edalat,et al. Computing Delaunay Triangulation with Imprecise Input Data , 2003, CCCG.
[31] D. Salesin,et al. Constructing strongly convex approximate hulls with inaccurate primitives , 1990, Algorithmica.