Delaunay triangulations of imprecise pointsin linear time after preprocessing

An assumption of nearly all algorithms in computational geometry is that the input points are given precisely, so it is interesting to ask what is the value of imprecise information about points. We show how to preprocess a set of n disjoint unit disks in the plane in O(n log n) time so that if one point per disk is specified with precise coordinates, the Delaunay triangulation can be computed in linear time. From the Delaunay, one can obtain the Gabriel graph and a Euclidean minimum spanning tree; it is interesting to note the roles that these two structures play in our algorithm to quickly compute the Delaunay.

[1]  R. Sokal,et al.  A New Statistical Approach to Geographic Variation Analysis , 1969 .

[2]  Francis Y. L. Chin,et al.  Finding the Constrained Delaunay Triangulation and Constrained Voronoi Diagram of a Simple Polygon in Linear Time , 1999, SIAM J. Comput..

[3]  Leonidas J. Guibas,et al.  Epsilon geometry: building robust algorithms from imprecise computations , 1989, SCG '89.

[4]  Ali Asghar Khanban,et al.  Basic algorithms in computational geometry with imprecise input , 2005 .

[5]  Maarten Löffler,et al.  Largest bounding box, smallest diameter, and related problems on imprecise points , 2007, Comput. Geom..

[6]  Anthony P. Leclerc,et al.  Correct Delaunay Triangulation in the Presence of Inexact Inputs and Arithmetic , 2000, Reliab. Comput..

[7]  Frank Weller Stability of voronoi neighborship under perturbations of the sites , 1997, CCCG.

[8]  Maarten Löffler,et al.  Largest and Smallest Convex Hulls for Imprecise Points , 2010, Algorithmica.

[9]  Joseph S. B. Mitchell,et al.  Practical methods for approximate geometric pattern matching under rigid motions: (preliminary version) , 1994, SCG '94.

[10]  Maarten Löffler,et al.  Largest Bounding Box, Smallest Diameter, and Related Problems on Imprecise Points , 2007, WADS.

[11]  M. Iri,et al.  Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.

[12]  Patric R. J. Östergård,et al.  Dense packings of congruent circles in a circle , 1998, Discret. Math..

[13]  Wolfram Luther,et al.  Reliable Distance and Intersection Computation Using Finite Precision Geometry , 2003, Numerical Software with Result Verification.

[14]  Francis Y. L. Chin,et al.  Finding the Medial Axis of a Simple Polygon in Linear Time , 1995, ISAAC.

[15]  Leonidas J. Guibas,et al.  A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1989, Discret. Comput. Geom..

[16]  Abbas Edalat,et al.  Computability of Partial Delaunay Triangulation and Voronoi Diagram , 2002, CCA.

[17]  Kurt Mehlhorn,et al.  LEDA: a platform for combinatorial and geometric computing , 1997, CACM.

[18]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[19]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[20]  R. Seidel A Method for Proving Lower Bounds for Certain Geometric Problems , 1984 .

[21]  Jonathan Richard Shewchuk,et al.  Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..

[22]  Manuel Abellanas,et al.  Structural Tolerance and Delaunay Triangulation , 1999, Inf. Process. Lett..

[23]  Jack Snoeyink,et al.  Almost-Delaunay simplices: Robust neighbor relations for imprecise 3D points using CGAL , 2007, Comput. Geom..

[24]  Ivan Stojmenovic,et al.  Localized LMST and RNG based minimum-energy broadcast protocols in ad hoc networks , 2005, Ad Hoc Networks.

[25]  M. Iri,et al.  Two Design Principles of Geometric Algorithms in Finite-Precision Arithmetic , 1989 .

[26]  Chee-Keng Yap,et al.  Robust Geometric Computation , 2016, Encyclopedia of Algorithms.

[27]  Pierre Alliez,et al.  Computational geometry algorithms library , 2008, SIGGRAPH '08.

[28]  Steven Fortune,et al.  Numerical stability of algorithms for 2-d Delaunay triangulations , 1995, Int. J. Comput. Geom. Appl..

[29]  Jack Snoeyink,et al.  Almost-Delaunay simplices: nearest neighbor relations for imprecise points , 2004, SODA '04.

[30]  Abbas Edalat,et al.  Computing Delaunay Triangulation with Imprecise Input Data , 2003, CCCG.

[31]  D. Salesin,et al.  Constructing strongly convex approximate hulls with inaccurate primitives , 1990, Algorithmica.