Proteostasis in complex dendrites

Like all cells, neurons are made of proteins that have characteristic synthesis and degradation profiles. Unlike other cells, however, neurons have a unique multipolar architecture that makes ∼10,000 synaptic contacts with other neurons. Both the stability and modifiability of the neuronal proteome are crucial for its information-processing, storage and plastic properties. The cell biological mechanisms that synthesize, modify, deliver and degrade dendritic and synaptic proteins are not well understood but appear to reflect unique solutions adapted to the particular morphology of neurons.

[1]  S. Herculano‐Houzel Scaling of Brain Metabolism with a Fixed Energy Budget per Neuron: Implications for Neuronal Activity, Plasticity and Evolution , 2011, PloS one.

[2]  E. Schuman,et al.  Protein homeostasis and synaptic plasticity , 2010, The EMBO journal.

[3]  M. Sheng,et al.  Quaternary Structure, Protein Dynamics, and Synaptic Function of SAP97 Controlled by L27 Domain Interactions , 2004, Neuron.

[4]  M. Ehlers,et al.  Reinsertion or Degradation of AMPA Receptors Determined by Activity-Dependent Endocytic Sorting , 2000, Neuron.

[5]  J. Henley,et al.  Lateral Diffusion Drives Constitutive Exchange of AMPA Receptors at Dendritic Spines and Is Regulated by Spine Morphology , 2006, The Journal of Neuroscience.

[6]  Shigeo Okabe,et al.  Differential Control of Postsynaptic Density Scaffolds via Actin-Dependent and -Independent Mechanisms , 2006, The Journal of Neuroscience.

[7]  N. Kasthuri,et al.  Long-term dendritic spine stability in the adult cortex , 2002, Nature.

[8]  R. Beynon,et al.  Protein turnover: Measurement of proteome dynamics by whole animal metabolic labelling with stable isotope labelled amino acids , 2012, Proteomics.

[9]  S. Fuller,et al.  The dynamic nature of the Golgi complex , 1989, The Journal of cell biology.

[10]  R. Goodman,et al.  MicroRNA pathways in neural development and plasticity , 2010, Current Opinion in Neurobiology.

[11]  Neal Sweeney,et al.  Synaptic Strength Regulated by Palmitate Cycling on PSD-95 , 2002, Cell.

[12]  Susumu Goto,et al.  KEGG for integration and interpretation of large-scale molecular data sets , 2011, Nucleic Acids Res..

[13]  Alastair M. Hosie,et al.  Dynamic mobility of functional GABAA receptors at inhibitory synapses , 2005, Nature Neuroscience.

[14]  Xiaobing Chen,et al.  Mass of the postsynaptic density and enumeration of three key molecules. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Daniel Choquet,et al.  Endocytic Trafficking and Recycling Maintain a Pool of Mobile Surface AMPA Receptors Required for Synaptic Potentiation , 2009, Neuron.

[16]  Brad E. Pfeiffer,et al.  Rapid Translation of Arc/Arg3.1 Selectively Mediates mGluR-Dependent LTD through Persistent Increases in AMPAR Endocytosis Rate , 2008, Neuron.

[17]  Hongqing Guo,et al.  Single-Cell Microarray Analysis in Hippocampus CA1: Demonstration and Validation of Cellular Heterogeneity , 2003, The Journal of Neuroscience.

[18]  Berton A. Earnshaw,et al.  Diffusion-trapping model of receptor trafficking in dendrites. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  R. Nicoll,et al.  PSD-95 involvement in maturation of excitatory synapses. , 2000, Science.

[20]  M. Sheng,et al.  The dynamic turnover and functional roles of α-actinin in dendritic spines , 2004, Neuropharmacology.

[21]  E. Schuman,et al.  Cell-selective metabolic labeling of proteins. , 2009, Nature chemical biology.

[22]  C. Lüscher,et al.  Rapid Synthesis and Synaptic Insertion of GluR2 for mGluR-LTD in the Ventral Tegmental Area , 2007, Science.

[23]  C. Holt,et al.  Local translation and directional steering in axons , 2007, The EMBO journal.

[24]  Robert J Beynon,et al.  Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC. , 2009, Journal of proteome research.

[25]  T. Babak,et al.  A quantitative atlas of polyadenylation in five mammals , 2012, Genome research.

[26]  A. Triller,et al.  Diffusion Barriers Constrain Receptors at Synapses , 2012, PloS one.

[27]  Y. Jan,et al.  Growing Dendrites and Axons Differ in Their Reliance on the Secretory Pathway , 2007, Cell.

[28]  Thomas A Blanpied,et al.  Subsynaptic AMPA Receptor Distribution Is Acutely Regulated by Actin-Driven Reorganization of the Postsynaptic Density , 2012, The Journal of Neuroscience.

[29]  Venkatesh N. Murthy,et al.  Rapid turnover of actin in dendritic spines and its regulation by activity , 2002, Nature Neuroscience.

[30]  Theresa Zhang,et al.  Dendritic mRNAs encode diversified functionalities in hippocampal pyramidal neurons , 2006, BMC Neuroscience.

[31]  P. Baas,et al.  Mitotic Motors Coregulate Microtubule Patterns in Axons and Dendrites , 2012, The Journal of Neuroscience.

[32]  Wei-Yang Lu,et al.  Activation of Synaptic NMDA Receptors Induces Membrane Insertion of New AMPA Receptors and LTP in Cultured Hippocampal Neurons , 2001, Neuron.

[33]  D. Rowitch,et al.  A Centrosomal Cdc20-APC Pathway Controls Dendrite Morphogenesis in Postmitotic Neurons , 2009, Cell.

[34]  M. Ehlers,et al.  Dual Modes of Endoplasmic Reticulum-to-Golgi Transport in Dendrites Revealed by Live-Cell Imaging , 2003, The Journal of Neuroscience.

[35]  Hillel Adesnik,et al.  Photoinactivation of Native AMPA Receptors Reveals Their Real-Time Trafficking , 2005, Neuron.

[36]  Erin M. Schuman,et al.  The Local Transcriptome in the Synaptic Neuropil Revealed by Deep Sequencing and High-Resolution Imaging , 2012, Neuron.

[37]  M. Ehlers,et al.  Secretory Outposts for the Local Processing of Membrane Cargo in Neuronal Dendrites , 2008, Traffic.

[38]  Ramón y Cajal,et al.  Histologie du système nerveux de l'homme & des vertébrés , 1909 .

[39]  E. Schuman,et al.  Dendrites , 1978, Journal of the Geological Society.

[40]  P. Somogyi,et al.  Quantitative localisation of synaptic and extrasynaptic GABAA receptor subunits on hippocampal pyramidal cells by freeze‐fracture replica immunolabelling , 2010, The European journal of neuroscience.

[41]  M. Sheng,et al.  Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization , 2000, Nature Neuroscience.

[42]  G. Ascoli,et al.  NeuroMorpho.Org: A Central Resource for Neuronal Morphologies , 2007, The Journal of Neuroscience.

[43]  G. Westbrook,et al.  Mobile NMDA Receptors at Hippocampal Synapses , 2002, Neuron.

[44]  Stephen G Oliver,et al.  Dynamics of Protein Turnover, a Missing Dimension in Proteomics* , 2002, Molecular & Cellular Proteomics.

[45]  Z. Nusser Differential subcellular distribution of ion channels and the diversity of neuronal function , 2012, Current Opinion in Neurobiology.

[46]  E. Schuman,et al.  Miniature Neurotransmission Stabilizes Synaptic Function via Tonic Suppression of Local Dendritic Protein Synthesis , 2006, Cell.

[47]  J. Fiala,et al.  Polyribosomes Redistribute from Dendritic Shafts into Spines with Enlarged Synapses during LTP in Developing Rat Hippocampal Slices , 2002, Neuron.

[48]  E. O’Shea,et al.  Global analysis of protein expression in yeast , 2003, Nature.

[49]  R. Malenka,et al.  AMPA receptor trafficking and synaptic plasticity. , 2002, Annual review of neuroscience.

[50]  A. Triller,et al.  Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move! , 2005, Trends in Neurosciences.

[51]  J. Bourne,et al.  Local Zones of Endoplasmic Reticulum Complexity Confine Cargo in Neuronal Dendrites , 2012, Cell.

[52]  Y. Jan,et al.  Identification of E2/E3 Ubiquitinating Enzymes and Caspase Activity Regulating Drosophila Sensory Neuron Dendrite Pruning , 2006, Neuron.

[53]  David Holcman,et al.  Modeling synaptic dynamics driven by receptor lateral diffusion. , 2006, Biophysical journal.

[54]  S. Guan,et al.  Analysis of proteome dynamics in the mouse brain , 2010, Proceedings of the National Academy of Sciences.

[55]  M. Mann,et al.  Systems-wide proteomic analysis in mammalian cells reveals conserved, functional protein turnover. , 2011, Journal of proteome research.

[56]  L. Reichardt,et al.  The origin recognition core complex regulates dendrite and spine development in postmitotic neurons , 2005, The Journal of cell biology.

[57]  Peter J. Shepard,et al.  Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. , 2011, RNA.

[58]  A. Sergé,et al.  Receptor Activation and Homer Differentially Control the Lateral Mobility of Metabotropic Glutamate Receptor 5 in the Neuronal Membrane , 2002, The Journal of Neuroscience.

[59]  Kelley W. Moremen,et al.  Vertebrate protein glycosylation: diversity, synthesis and function , 2012, Nature Reviews Molecular Cell Biology.

[60]  Rob Phillips,et al.  SnapShot: Key Numbers in Biology , 2010, Cell.

[61]  KM Harris,et al.  Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  N. Ziv,et al.  Metabolic Turnover of Synaptic Proteins: Kinetics, Interdependencies and Implications for Synaptic Maintenance , 2013, PloS one.

[63]  S. R. Y. Cajal,et al.  Les nouvelles idées sur la structure du système nerveux chez l'homme et chez les vertébrés , 1894 .

[64]  L. Jan,et al.  The distribution and targeting of neuronal voltage-gated ion channels , 2006, Nature Reviews Neuroscience.

[65]  R. Malinow,et al.  Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. , 2000, Science.

[66]  R. Shigemoto,et al.  High-resolution quantitative visualization of glutamate and GABA receptors at central synapses , 2007, Current Opinion in Neurobiology.

[67]  K. Svoboda,et al.  Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex , 2002, Nature.

[68]  C. Hoogenraad,et al.  The postsynaptic architecture of excitatory synapses: a more quantitative view. , 2007, Annual review of biochemistry.

[69]  T. Soderling,et al.  Brain-Derived Neurotrophic Factor Activation of CaM-Kinase Kinase via Transient Receptor Potential Canonical Channels Induces the Translation and Synaptic Incorporation of GluA1-Containing Calcium-Permeable AMPA Receptors , 2012, The Journal of Neuroscience.

[70]  I. Greger,et al.  RNA Editing at Arg607 Controls AMPA Receptor Exit from the Endoplasmic Reticulum , 2002, Neuron.

[71]  A. Triller,et al.  A crosstalk between β1 and β3 integrins controls glycine receptor and gephyrin trafficking at synapses , 2010, Nature Neuroscience.

[72]  Susumu Tonegawa,et al.  The Dendritic Branch Is the Preferred Integrative Unit for Protein Synthesis-Dependent LTP , 2011, Neuron.

[73]  M. Ehlers Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system , 2003, Nature Neuroscience.

[74]  George Palade,et al.  Intracellular Aspects of the Process of Protein Synthesis , 1975, Science.

[75]  J. Boothroyd,et al.  Biosynthetic labeling of RNA with uracil phosphoribosyltransferase allows cell-specific microarray analysis of mRNA synthesis and decay , 2005, Nature Biotechnology.

[76]  Ann Marie Craig,et al.  Postsynaptic protein mobility in dendritic spines: Long-term regulation by synaptic NMDA receptor activation , 2006, Molecular and Cellular Neuroscience.

[77]  Karel Svoboda,et al.  Rapid Redistribution of Synaptic PSD-95 in the Neocortex In Vivo , 2006, PLoS biology.

[78]  Nobutaka Hirokawa,et al.  Disruption of KIF17–Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin–cargo release , 2008, Nature Cell Biology.

[79]  M. Ehlers,et al.  Glutamate Receptor Dynamics in Dendritic Microdomains , 2008, Neuron.

[80]  G. Collingridge,et al.  Receptor trafficking and synaptic plasticity , 2004, Nature Reviews Neuroscience.

[81]  Eric E. Monson,et al.  Polarized Secretory Trafficking Directs Cargo for Asymmetric Dendrite Growth and Morphogenesis , 2005, Neuron.

[82]  C. Aoki,et al.  SAP97 and CASK mediate sorting of NMDA receptors through a previously unknown secretory pathway , 2009, Nature Neuroscience.

[83]  Erin M. Schuman,et al.  Activity-dependent dynamics and sequestration of proteasomes in dendritic spines , 2006, Nature.

[84]  E. Schuman,et al.  Ubiquitin-Mediated Proteasome Activity Is Required for Agonist-Induced Endocytosis of GluRs , 2003, Current Biology.

[85]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[86]  D. Amaral,et al.  A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus , 1995, The Journal of comparative neurology.

[87]  K. Sobue,et al.  Rapid Redistribution of the Postsynaptic Density Protein PSD-Zip45 (Homer 1c) and Its Differential Regulation by NMDA Receptors and Calcium Channels , 2001, The Journal of Neuroscience.

[88]  W M Cowan,et al.  Quantitative, three‐dimensional analysis of granule cell dendrites in the rat dentate gyrus , 1990, The Journal of comparative neurology.

[89]  U. Frey,et al.  Synaptic tagging and long-term potentiation , 1997, Nature.

[90]  P. Haydon,et al.  Gephyrin Regulates the Cell Surface Dynamics of Synaptic GABAA Receptors , 2005, The Journal of Neuroscience.

[91]  R. Petralia,et al.  SAP102 Is a Highly Mobile MAGUK in Spines , 2010, The Journal of Neuroscience.

[92]  O. Thoumine,et al.  Unified quantitative model of AMPA receptor trafficking at synapses , 2012, Proceedings of the National Academy of Sciences.

[93]  J. Bourne,et al.  Polyribosomes are increased in spines of CA1 dendrites 2 h after the induction of LTP in mature rat hippocampal slices , 2007, Hippocampus.

[94]  E. Schutter,et al.  Anomalous Diffusion in Purkinje Cell Dendrites Caused by Spines , 2006, Neuron.

[95]  Samara L. Reck-Peterson,et al.  Tug-of-War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold , 2012, Science.

[96]  Daniel Choquet,et al.  The Interaction between Stargazin and PSD-95 Regulates AMPA Receptor Surface Trafficking , 2007, Neuron.

[97]  Kelsey C. Martin,et al.  Identification of Process-Localized mRNAs from Cultured Rodent Hippocampal Neurons , 2006, The Journal of Neuroscience.

[98]  S. Raghavachari,et al.  Mechanisms of CaMKII action in long-term potentiation , 2012, Nature Reviews Neuroscience.

[99]  Kristen M Harris,et al.  Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP , 2011, Hippocampus.

[100]  Frank Bradke,et al.  Axon Extension Occurs Independently of Centrosomal Microtubule Nucleation , 2010, Science.

[101]  A. El-Husseini,et al.  Excitation Control: Balancing PSD-95 Function at the Synapse , 2008, Frontiers in molecular neuroscience.

[102]  Robert Weismantel,et al.  SynProt: A Database for Proteins of Detergent-Resistant Synaptic Protein Preparations , 2012, Front. Syn. Neurosci..

[103]  S. Warren,et al.  Fragile X Syndrome: Loss of Local mRNA Regulation Alters Synaptic Development and Function , 2008, Neuron.

[104]  Uri Alon,et al.  Proteome Half-Life Dynamics in Living Human Cells , 2011, Science.

[105]  E. Schuman,et al.  Activity-Regulated N-Cadherin Endocytosis , 2007, Neuron.

[106]  G. Banker,et al.  Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[107]  Andreas Lüthi,et al.  Hippocampal LTD Expression Involves a Pool of AMPARs Regulated by the NSF–GluR2 Interaction , 1999, Neuron.

[108]  M. Ehlers,et al.  Ubiquitination in postsynaptic function and plasticity. , 2010, Annual review of cell and developmental biology.