Basic properties of SLE

SLEκ is a random growth process based on Loewner’s equation with driving parameter a one-dimensional Brownian motion running with speed κ. This process is intimately connected with scaling limits of percolation clusters and with the outer boundary of Brownian motion, and is conjectured to correspond to scaling limits of several other discrete processes in two dimensions.

[1]  Peter W. Jones,et al.  Density properties of harmonic measure , 1995 .

[2]  Wendelin Werner,et al.  Values of Brownian intersection exponents III: Two-sided exponents , 2002 .

[3]  Stanislav Smirnov,et al.  Critical percolation in the plane : I. Conformal invariance and Cardy's formula. II. Continuum scaling limit , 2001 .

[4]  Duplantier Conformally invariant fractals and potential theory , 2000, Physical review letters.

[5]  Wendelin Werner,et al.  Conformal invariance of planar loop-erased random walks and uniform spanning trees , 2001 .

[6]  David B Wilson,et al.  Winding angle variance of Fortuin-Kasteleyn contours. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  C. Pommerenke Boundary Behaviour of Conformal Maps , 1992 .

[8]  Oded Schramm,et al.  Harmonic explorer and its convergence to SLE4 , 2003 .

[9]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[10]  Wendelin Werner,et al.  Values of Brownian intersection exponents, I: Half-plane exponents , 1999 .

[11]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[12]  O. Schramm,et al.  Conformal restriction: The chordal case , 2002, math/0209343.

[13]  S. Smirnov Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits , 2001 .

[14]  Julien Dubedat SLE(κ,ρ) martingales and duality , 2003 .

[15]  R. Durrett Stochastic Calculus: A Practical Introduction , 1996 .

[16]  N. Makarov FINE STRUCTURE OF HARMONIC MEASURE , 1998 .

[17]  Saleur,et al.  Exact determination of the percolation hull exponent in two dimensions. , 1987, Physical review letters.

[18]  Critical Exponents, Conformal Invariance and Planar Brownian Motion , 2000, math/0007042.

[19]  L. Carleson,et al.  Aggregation in the Plane and Loewner's Equation , 2001 .

[20]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[21]  Stella,et al.  Scaling and fractal dimension of Ising clusters at the d=2 critical point. , 1989, Physical review letters.

[22]  L. Ahlfors Conformal Invariants: Topics in Geometric Function Theory , 1973 .

[23]  P. Koskela,et al.  Hausdorff Dimension and mean porosity , 1997 .

[24]  Oded Schramm,et al.  Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.

[25]  C. L. Henley,et al.  New two-color dimer models with critical ground states , 1997 .

[26]  John Cardy Conformal Invariance and Percolation , 2001 .