Cambrian ecological complexities: perspectives from the earliest brachiopod - supported benthic communities in the early Cambrian Guanshan Lagerstätte

[1]  Yu Wang,et al.  A ‘hermit’ shell-dwelling lifestyle in a Cambrian priapulan worm , 2021, Current Biology.

[2]  D. Harper,et al.  Early Cambrian brachiopod-dominated shell concentrations from North-East Greenland: Environmental and taphonomic implications , 2021 .

[3]  Richard J. Howard,et al.  Tabelliscolex (Cricocosmiidae: Palaeoscolecidomorpha) from the early Cambrian Chengjiang Biota and the evolution of seriation in Ecdysozoa , 2021, Journal of the Geological Society.

[4]  S. Kimmig,et al.  A juvenile-rich palaeocommunity of the lower Cambrian Chengjiang biota sheds light on palaeo-boom or palaeo-bust environments , 2021, Nature Ecology & Evolution.

[5]  Jean‐Bernard Caron,et al.  Symbiosis in the Cambrian: enteropneust tubes from the Burgess Shale co-inhabited by commensal polychaetes , 2021, Proceedings of the Royal Society B.

[6]  Yanlong Chen,et al.  Early Cambrian (Stage 4) brachiopods from the Shipai Formation in the Three Gorges area of South China , 2021, Journal of Paleontology.

[7]  J. Ortega‐Hernández,et al.  The diverse radiodont fauna from the Marjum Formation of Utah, USA (Cambrian: Drumian) , 2021, PeerJ.

[8]  J. Schiffbauer,et al.  First palaeoscolecid from the Cambrian (Drumian, Miaolingian) Marjum Formation of western Utah, USA , 2021 .

[9]  A. Whitaker,et al.  Anthropologically introduced biases in natural history collections, with a case study on the invertebrate paleontology collections from the middle Cambrian Spence Shale Lagerstätte , 2020 .

[10]  H. Jian,et al.  Core value of the Chengjiang fauna: formation of the animal kingdom and the birth of basic human organs(English version of the full article is on pages 382412 of this issue.) , 2020 .

[11]  Yang Zhao,et al.  Symbiotic fouling of Vetulicola, an early Cambrian nektonic animal , 2020, Communications Biology.

[12]  Zhifei Zhang,et al.  Brachiopod-dominated communities and depositional environment of the Guanshan Konservat-Lagerstätte, eastern Yunnan, China , 2020, Journal of the Geological Society.

[13]  L. Holmer,et al.  First report of acrotretoid brachiopod shell beds in the lower Cambrian (Stage 4) Guanshan Biota of eastern Yunnan, South China , 2020, Journal of Paleontology.

[14]  M. G. Mángano,et al.  The rise and early evolution of animals: where do we stand from a trace-fossil perspective? , 2020, Interface Focus.

[15]  Yanlong Chen,et al.  An encrusting kleptoparasite-host interaction from the early Cambrian , 2020, Nature Communications.

[16]  B. Lieberman,et al.  First occurrence of the problematic vetulicolian Skeemella clavula in the Cambrian Marjum Formation of Utah, USA , 2020 .

[17]  Maoyan Zhu,et al.  Skeletal faunas of the lower Cambrian Yu'anshan Formation, eastern Yunnan, China: Metazoan diversity and community structure during the Cambrian Age 3 , 2020 .

[18]  J. Schiffbauer,et al.  Re-description of the Spence Shale palaeoscolecids in light of new morphological features with comments on palaeoscolecid taxonomy and taphonomy , 2020, PalZ.

[19]  D. Erwin The origin of animal body plans: a view from fossil evidence and the regulatory genome , 2020, Development.

[20]  Jean‐Bernard Caron,et al.  The Burgess Shale paleocommunity with new insights from Marble Canyon, British Columbia , 2020, Paleobiology.

[21]  M. Laflamme,et al.  Increase in metazoan ecosystem engineering prior to the Ediacaran–Cambrian boundary in the Nama Group, Namibia , 2019, Royal Society Open Science.

[22]  Jean‐Bernard Caron,et al.  A new hurdiid radiodont from the Burgess Shale evinces the exploitation of Cambrian infaunal food sources , 2019, Proceedings of the Royal Society B.

[23]  Zhifei Zhang,et al.  First report on Guanshan Biota (Cambrian Stage 4) at the stratotype area of Wulongqing Formation in Malong County, Eastern Yunnan, China , 2019, Geoscience Frontiers.

[24]  B. Lieberman,et al.  The Spence Shale Lagerstätte: an important window into Cambrian biodiversity , 2019, Journal of the Geological Society.

[25]  Y. Zhang,et al.  The Qingjiang biota—A Burgess Shale–type fossil Lagerstätte from the early Cambrian of South China , 2019, Science.

[26]  A. Liu,et al.  Integrated records of environmental change and evolution challenge the Cambrian Explosion , 2019, Nature Ecology & Evolution.

[27]  P. Van Roy,et al.  The Weeks Formation Konservat-Lagerstätte and the evolutionary transition of Cambrian marine life , 2018, Journal of the Geological Society.

[28]  J. Paterson,et al.  Reappraising the early evidence of durophagy and drilling predation in the fossil record: implications for escalation and the Cambrian Explosion , 2018, Biological reviews of the Cambridge Philosophical Society.

[29]  B. Pratt,et al.  COPROLITES IN THE RAVENS THROAT RIVER LAGERSTÄTTE OF NORTHWESTERN CANADA: IMPLICATIONS FOR THE MIDDLE CAMBRIAN FOOD WEB , 2018, Palaios.

[30]  D. Harper,et al.  The dawn of a dynasty : life strategies of Cambrian and Ordovician brachiopods. , 2018 .

[31]  M. G. Mángano,et al.  The Cambrian revolutions: Trace-fossil record, timing, links and geobiological impact , 2017 .

[32]  J. Kimmig,et al.  Coprolites in mid-Cambrian (Series 2-3) Burgess Shale-type deposits of Nevada and Utah and their ecological implications , 2017 .

[33]  G. Edgecombe,et al.  Host-specific infestation in early Cambrian worms , 2017, Nature Ecology & Evolution.

[34]  R. Lerosey‐Aubril,et al.  Messorocaris, a new sanctacaridid-like arthropod from the middle Cambrian Wheeler Formation (Utah, USA) , 2017, Geological Magazine.

[35]  J. S. Peel Mineralized gutfills from the Sirius Passet Lagerstätte (Cambrian Series 2) of North Greenland , 2017 .

[36]  Emmanuel L. O. Martin,et al.  Worm-lobopodian assemblages from the Early Cambrian Chengjiang biota: Insight into the “pre-arthropodan ecology”? , 2017 .

[37]  S. Jensen,et al.  The origin of the animals and a ‘Savannah’ hypothesis for early bilaterian evolution , 2017, Biological reviews of the Cambridge Philosophical Society.

[38]  R. Wood,et al.  Demise of Ediacaran dolomitic seas marks widespread biomineralization on the Siberian Platform , 2017 .

[39]  B. Pratt,et al.  Taphonomy of the middle Cambrian (Drumian) Ravens Throat River Lagerstätte, Rockslide Formation, Mackenzie Mountains, Northwest Territories, Canada , 2016 .

[40]  M. Feldman,et al.  An introduction to niche construction theory , 2016, Evolutionary Ecology.

[41]  G. Edgecombe,et al.  A new aglaspidid-like euarthropod from the lower Cambrian Emu Bay Shale of South Australia , 2016, Geological Magazine.

[42]  G. Budd,et al.  Ecological innovations in the Cambrian and the origins of the crown group phyla , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[43]  D. Erwin Early metazoan life: divergence, environment and ecology , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[44]  L. Holmer,et al.  Survival on a soft seafloor: life strategies of brachiopods from the Cambrian Burgess Shale , 2015 .

[45]  Jean‐Bernard Caron,et al.  Paleocommunity Analysis of the Burgess Shale Tulip Beds, Mount Stephen, British Columbia: Comparison with the Walcott Quarry and Implications for Community Variation in the Burgess Shale , 2015, Paleobiology.

[46]  Jean‐Bernard Caron,et al.  A large new leanchoiliid from the Burgess Shale and the influence of inapplicable states on stem arthropod phylogeny , 2015 .

[47]  A. Liu,et al.  Remarkable insights into the paleoecology of the Avalonian Ediacaran macrobiota , 2015 .

[48]  B. Pratt,et al.  Soft-bodied biota from the middle Cambrian (Drumian) Rockslide Formation, Mackenzie Mountains, northwestern Canada , 2015, Journal of Paleontology.

[49]  L. Holmer,et al.  Brachiopods hitching a ride: an early case of commensalism in the middle Cambrian Burgess Shale , 2014, Scientific Reports.

[50]  Wen Wu,et al.  Composition and tiering of the Cambrian sponge communities , 2014 .

[51]  Jean‐Bernard Caron,et al.  A new phyllopod bed-like assemblage from the Burgess Shale of the Canadian Rockies , 2014, Nature Communications.

[52]  D. Bottjer,et al.  Diversity and species abundance patterns of the Early Cambrian (Series 2, Stage 3) Chengjiang Biota from China , 2014, Paleobiology.

[53]  D. Erwin,et al.  The end of the Ediacara biota: Extinction, biotic replacement, or Cheshire Cat? , 2013 .

[54]  J. Ortega‐Hernández,et al.  Specialized appendages in fuxianhuiids and the head organization of early euarthropods , 2013, Nature.

[55]  Erik,et al.  Exceptionally preserved brachiopods from the Chengjiang Lagerst(a|¨)tte(Yunnan,China):Perspectives on the Cambrian explosion of metazoans , 2013 .

[56]  J. Vannier Gut Contents as Direct Indicators for Trophic Relationships in the Cambrian Marine Ecosystem , 2012, PloS one.

[57]  Maoyan Zhu,et al.  Spatial variation in the diversity and composition of the Lower Cambrian (Series 2, Stage 3) Chengjiang Biota, Southwest China , 2012 .

[58]  L. Holmer,et al.  Peduncular attached secondary tiering acrotretoid brachiopods from the Chengjiang fauna: Implications for the ecological expansion of brachiopods during the Cambrian explosion , 2012 .

[59]  D. Canfield,et al.  Mechanism for Burgess Shale-type preservation , 2012, Proceedings of the National Academy of Sciences.

[60]  Jian Han,et al.  New occurence of the Cambrian (Stage 4, Series 2) Guanshan Biota in Huize, Yunnan, South China , 2012 .

[61]  Jean‐Bernard Caron,et al.  A New Stalked Filter-Feeder from the Middle Cambrian Burgess Shale, British Columbia, Canada , 2012, PloS one.

[62]  L. Holmer,et al.  The exceptionally preserved Early Cambrian stem rhynchonelliform brachiopod Longtancunella and its implications , 2011 .

[63]  D. Erwin,et al.  The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals , 2011, Science.

[64]  L. Holmer,et al.  An Obolellate Brachiopod with Soft-Part Preservation from the Early Cambrian Chengjiang Fauna of China , 2011 .

[65]  Maoyan Zhu,et al.  Biodiversity and taphonomy of the Early Cambrian Guanshan biota, eastern Yunnan , 2010 .

[66]  Z. Maoyan,et al.  Community structure and composition of the Cambrian Chengjiang biota , 2010 .

[67]  C. Emig,et al.  Epibionts on the lingulate brachiopod Diandongia from the Early Cambrian Chengjiang Lagerstätte, South China , 2010, Proceedings of the Royal Society B: Biological Sciences.

[68]  Maoyan Zhu,et al.  QUANTITATIVE ANALYSIS OF TAPHOFACIES AND PALEOCOMMUNITIES IN THE EARLY CAMBRIAN CHENGJIANG LAGERSTÄTTE , 2009 .

[69]  Neo D. Martinez,et al.  Compilation and Network Analyses of Cambrian Food Webs , 2008, PLoS biology.

[70]  Donald A. Jackson,et al.  Paleoecology of the Greater Phyllopod Bed community, Burgess Shale , 2008 .

[71]  Yuan-long Zhao,et al.  TUZOIA: MORPHOLOGY AND LIFESTYLE OF A LARGE BIVALVED ARTHROPOD OF THE CAMBRIAN SEAS , 2007, Journal of Paleontology.

[72]  Jian Han,et al.  A gregarious lingulid brachiopod Longtancunella chengjiangensis from the Lower Cambrian, South China , 2006 .

[73]  Jian Han,et al.  Preliminary notes on soft-bodied fossil concentrations from the Early Cambrian Chengjiang deposits , 2006 .

[74]  Donald A. Jackson,et al.  TAPHONOMY OF THE GREATER PHYLLOPOD BED COMMUNITY, BURGESS SHALE , 2006 .

[75]  Jian Han,et al.  NEW DATA ON THE RARE CHENGJIANG (LOWER CAMBRIAN, SOUTH CHINA) LINGULOID BRACHIOPOD XIANSHANELLA HAIKOUENSIS , 2006, Journal of Paleontology.

[76]  Yuan-long Zhao,et al.  Lower Cambrian Burgess Shale-type fossil associations of South China , 2005 .

[77]  J. Vannier,et al.  Early Cambrian Food Chain: New Evidence from Fossil Aggregates in the Maotianshan Shale Biota, SW China , 2005 .

[78]  My Zhu,et al.  Direct evidence for predation on trilobites in the Cambrian , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[79]  M. Clapham,et al.  Ediacaran epifaunal tiering , 2002 .

[80]  M. McMenamin The garden of Ediacara , 1998 .

[81]  S. Morris The community structure of the Middle Cambrian Phyllopod Bed lBurgess Shaler , 1986 .

[82]  J. Sepkoski,et al.  A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions , 1984, Paleobiology.

[83]  K. An ON THE DISCOVERY OF HOMOPODA FROM SOUTH CHINA , 1957 .