Robust equilibrated a posteriori error estimator for higher order finite element approximations to diffusion problems
暂无分享,去创建一个
Zhiqiang Cai | Shun Zhang | Difeng Cai | Z. Cai | Shun Zhang | Difeng Cai
[1] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[2] Barbara I. Wohlmuth,et al. A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..
[3] Rüdiger Verfürth,et al. Adaptive finite element methods for elliptic equations with non-smooth coefficients , 2000, Numerische Mathematik.
[4] Dietrich Braess,et al. A Posteriori Error Estimators for the Raviart--Thomas Element , 1996 .
[5] Martin Petzoldt,et al. A Posteriori Error Estimators for Elliptic Equations with Discontinuous Coefficients , 2002, Adv. Comput. Math..
[6] Jinchao Xu,et al. Superconvergent Derivative Recovery for Lagrange Triangular Elements of Degree p on Unstructured Grids , 2007, SIAM J. Numer. Anal..
[7] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[8] W. Prager,et al. Approximations in elasticity based on the concept of function space , 1947 .
[9] Martin Vohralík,et al. Stable broken H1 and H(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions , 2020, Math. Comput..
[10] Shun Zhang,et al. Recovery-Based Error Estimator for Interface Problems: Conforming Linear Elements , 2009, SIAM J. Numer. Anal..
[11] Serge Nicaise,et al. Equilibrated error estimators for discontinuous Galerkin methods , 2008 .
[12] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[13] Ahmed Naga,et al. THE POLYNOMIAL-PRESERVING RECOVERY FOR HIGHER ORDER FINITE ELEMENT METHODS IN 2D AND 3D , 2005 .
[14] Dietrich Braess,et al. Equilibrated residual error estimator for edge elements , 2007, Math. Comput..
[15] R. Bruce Kellogg,et al. On the poisson equation with intersecting interfaces , 1974 .
[16] Shun Zhang,et al. Flux Recovery and A Posteriori Error Estimators: Conforming Elements for Scalar Elliptic Equations , 2010, SIAM J. Numer. Anal..
[17] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..
[18] Rüdiger Verfürth,et al. A Note on Constant-Free A Posteriori Error Estimates , 2009, SIAM J. Numer. Anal..
[19] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[20] E. G. Sewell,et al. Automatic generation of triangulations for piecewise polynomial approximation , 1972 .
[21] Zhiqiang Cai,et al. A hybrid a posteriori error estimator for conforming finite element approximations , 2018, Computer Methods in Applied Mechanics and Engineering.
[22] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[23] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[24] Dietrich Braess,et al. Equilibrated residual error estimates are p-robust , 2009 .
[25] Shun Zhang,et al. Robust Equilibrated Residual Error Estimator for Diffusion Problems: Conforming Elements , 2012, SIAM J. Numer. Anal..
[26] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .
[27] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[28] Rüdiger Verfürth,et al. A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .
[29] G. Ziegler. Lectures on Polytopes , 1994 .