Robust equilibrated a posteriori error estimator for higher order finite element approximations to diffusion problems

We present a patch-based equilibrated flux recovery procedure for the conforming finite element approximation to diffusion problems. The recovered flux is computed as the solution to a local constraint-free minimization problem on each patch. The approach is valid for higher order conforming elements in both two and three dimensions. The resulting estimator admits guaranteed reliability and the robust local efficiency is proved under the quasi-monotonicity condition of the diffusion coefficient. Numerical experiments are given to confirm the theoretical results.

[1]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[2]  Barbara I. Wohlmuth,et al.  A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..

[3]  Rüdiger Verfürth,et al.  Adaptive finite element methods for elliptic equations with non-smooth coefficients , 2000, Numerische Mathematik.

[4]  Dietrich Braess,et al.  A Posteriori Error Estimators for the Raviart--Thomas Element , 1996 .

[5]  Martin Petzoldt,et al.  A Posteriori Error Estimators for Elliptic Equations with Discontinuous Coefficients , 2002, Adv. Comput. Math..

[6]  Jinchao Xu,et al.  Superconvergent Derivative Recovery for Lagrange Triangular Elements of Degree p on Unstructured Grids , 2007, SIAM J. Numer. Anal..

[7]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[8]  W. Prager,et al.  Approximations in elasticity based on the concept of function space , 1947 .

[9]  Martin Vohralík,et al.  Stable broken H1 and H(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions , 2020, Math. Comput..

[10]  Shun Zhang,et al.  Recovery-Based Error Estimator for Interface Problems: Conforming Linear Elements , 2009, SIAM J. Numer. Anal..

[11]  Serge Nicaise,et al.  Equilibrated error estimators for discontinuous Galerkin methods , 2008 .

[12]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[13]  Ahmed Naga,et al.  THE POLYNOMIAL-PRESERVING RECOVERY FOR HIGHER ORDER FINITE ELEMENT METHODS IN 2D AND 3D , 2005 .

[14]  Dietrich Braess,et al.  Equilibrated residual error estimator for edge elements , 2007, Math. Comput..

[15]  R. Bruce Kellogg,et al.  On the poisson equation with intersecting interfaces , 1974 .

[16]  Shun Zhang,et al.  Flux Recovery and A Posteriori Error Estimators: Conforming Elements for Scalar Elliptic Equations , 2010, SIAM J. Numer. Anal..

[17]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[18]  Rüdiger Verfürth,et al.  A Note on Constant-Free A Posteriori Error Estimates , 2009, SIAM J. Numer. Anal..

[19]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[20]  E. G. Sewell,et al.  Automatic generation of triangulations for piecewise polynomial approximation , 1972 .

[21]  Zhiqiang Cai,et al.  A hybrid a posteriori error estimator for conforming finite element approximations , 2018, Computer Methods in Applied Mechanics and Engineering.

[22]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[23]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[24]  Dietrich Braess,et al.  Equilibrated residual error estimates are p-robust , 2009 .

[25]  Shun Zhang,et al.  Robust Equilibrated Residual Error Estimator for Diffusion Problems: Conforming Elements , 2012, SIAM J. Numer. Anal..

[26]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[27]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[28]  Rüdiger Verfürth,et al.  A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .

[29]  G. Ziegler Lectures on Polytopes , 1994 .