Changes in leaf chemistry and anatomy of Corymbia citriodora subsp. variegata (Myrtaceae) in response to native and exotic pathogens

[1]  David J. Lee,et al.  Does disease severity impact on plant foliar chemical and physical responses to two Corymbia citriodora subsp. variegata pathogens? , 2020 .

[2]  J. Tibbits,et al.  Using essential oil composition to discriminate between myrtle rust phenotypes in Eucalyptus globulus and Eucalyptus obliqua , 2019, Industrial Crops and Products.

[3]  R. Vaillancourt,et al.  Independent QTL underlie resistance to the native pathogen Quambalaria pitereka and the exotic pathogen Austropuccinia psidii in Corymbia , 2019, Tree Genetics & Genomes.

[4]  M. Byrne,et al.  Adaptive variation for growth and resistance to a novel pathogen along climatic gradients in a foundation tree , 2019, Evolutionary applications.

[5]  J. Tibbits,et al.  Geographical patterns of variation in susceptibility of Eucalyptus globulus and Eucalyptus obliqua to myrtle rust , 2019, Tree Genetics & Genomes.

[6]  M. C. Quecine,et al.  The Eucalyptus Cuticular Waxes Contribute in Preformed Defense Against Austropuccinia psidii , 2019, Front. Plant Sci..

[7]  B. Potts,et al.  Comparison of host susceptibilities to native and exotic pathogens provides evidence for pathogen-imposed selection in forest trees. , 2018, The New phytologist.

[8]  Gisele Rodrigues Moreira,et al.  Nutrient Cycling in Corymbia citriodora in the State of Rio de Janeiro, Brazil , 2019, Floresta e Ambiente.

[9]  W. T. L. Yong,et al.  Disease cycle of Austropuccinia psidii on Eucalyptus globulus and Eucalyptus obliqua leaves of different rust response phenotypes , 2018, Plant Pathology.

[10]  D. Ratkowsky,et al.  Association of Eucalyptus globulus leaf anatomy with susceptibility to Teratosphaeria leaf disease , 2018 .

[11]  Michelle R. Leishman,et al.  Impacts of the invasive fungus Austropuccinia psidii (myrtle rust) on three Australian Myrtaceae species of coastal swamp woodland , 2018 .

[12]  A. Melchinger,et al.  Parental Expression Variation of Small RNAs Is Negatively Correlated with Grain Yield Heterosis in a Maize Breeding Population , 2018, Front. Plant Sci..

[13]  M. Wingfield,et al.  Quambalaria species associated with eucalypt diseases in southern China , 2017 .

[14]  Angus Carnegie,et al.  Impact of Austropuccinia psidii (myrtle rust) on Myrtaceae-rich wet sclerophyll forests in south east Queensland , 2017, PloS one.

[15]  J. Zanuncio,et al.  Pre-Infection Stages of Austropuccinia psidii in the Epidermis of Eucalyptus Hybrid Leaves with Different Resistance Levels , 2017 .

[16]  A. Ganthaler,et al.  Foliar Phenolic Compounds in Norway Spruce with Varying Susceptibility to Chrysomyxa rhododendri: Analyses of Seasonal and Infection-Induced Accumulation Patterns , 2017, Front. Plant Sci..

[17]  B. Potts,et al.  The Extended Community-Level Effects of Genetic Variation in Foliar Wax Chemistry in the Forest Tree Eucalyptus globulus , 2017, Journal of Chemical Ecology.

[18]  Brian D. Young,et al.  Clearcutting and Site Preparation, but Not Planting, Promoted Early Tree Regeneration in Boreal Alaska , 2016 .

[19]  B. Potts,et al.  Evolutionary history shapes the susceptibility of an island tree flora to an exotic pathogen , 2016 .

[20]  R. Vaillancourt,et al.  Evidence for different QTL underlying the immune and hypersensitive responses of Eucalyptus globulus to the rust pathogen Puccinia psidii , 2016, Tree Genetics & Genomes.

[21]  O. L. Pereira,et al.  Screening of Corymbia and Eucalyptus species for resistance to Calonectria pteridis leaf blight , 2016 .

[22]  R. Vaillancourt,et al.  Genetic control of cuticular wax compounds in Eucalyptus globulus. , 2016, The New phytologist.

[23]  E. Santarém,et al.  Defense responses in plants of Eucalyptus elicited by Streptomyces and challenged with Botrytis cinerea , 2016, Planta.

[24]  A. Alfenas,et al.  Infection process of Puccinia psidii in Eucalyptus grandis leaves of different ages , 2015, Tropical Plant Pathology.

[25]  István Pócsi,et al.  Secondary metabolites in fungus-plant interactions , 2015, Front. Plant Sci..

[26]  A. Kathuria,et al.  Impact of the invasive rust Puccinia psidii (myrtle rust) on native Myrtaceae in natural ecosystems in Australia , 2015, Biological Invasions.

[27]  Hernan A. Retamales,et al.  A staining protocol for identifying secondary compounds in Myrtaceae , 2014, Applications in plant sciences.

[28]  W. Boerjan,et al.  The role of the secondary cell wall in plant resistance to pathogens , 2014, Front. Plant Sci..

[29]  David J. Lee,et al.  Screening Corymbia populations for resistance to Puccinia psidii , 2014 .

[30]  A. Soukup Selected simple methods of plant cell wall histochemistry and staining for light microscopy. , 2014, Methods in molecular biology.

[31]  F. Augusto,et al.  Comprehensive two-dimensional gas chromatography combined to multivariate data analysis for detection of disease-resistant clones of Eucalyptus. , 2013, Talanta.

[32]  O. Zabotina,et al.  Cell wall integrity , 2013, Plant signaling & behavior.

[33]  J. Gershenzon,et al.  A Common Fungal Associate of the Spruce Bark Beetle Metabolizes the Stilbene Defenses of Norway Spruce1[C][W][OA] , 2013, Plant Physiology.

[34]  B. Thumma,et al.  Molecular Tagging of Rust Resistance Genes in Eucalypts , 2013 .

[35]  R. Hayes,et al.  Corymbia leaf oils, latitude, hybrids and herbivory: a test using common-garden field trials , 2012 .

[36]  M. Wingfield,et al.  Eucalypt diseases and their management in China , 2011, Australasian Plant Pathology.

[37]  M. Glen,et al.  Uredo rangelii, a taxon in the guava rust complex, newly recorded on Myrtaceae in Australia , 2010, Australasian Plant Pathology.

[38]  M. Wingfield,et al.  Puccinia psidii: a threat to the Australian environment and economy —a review , 2007, Australasian Plant Pathology.

[39]  M. Wingfield,et al.  Anatomical variation and defence responses of juvenile Eucalyptus nitens leaves to Mycosphaerella leaf disease , 2006, Australasian Plant Pathology.

[40]  A. Alfenas,et al.  Infection of resistant and susceptible Eucalyptus grandis genotypes by urediniospores of Puccinia psidii , 2001, Australasian Plant Pathology.

[41]  D. Grattapaglia,et al.  Genetic mapping provides evidence for the role of additive and non-additive QTLs in the response of inter-specific hybrids of Eucalyptus to Puccinia psidii rust infection , 2011, Euphytica.

[42]  D. Lee,et al.  Selecting hardwood taxa for wood and fibre production in Queensland's subtropics , 2010 .

[43]  M. Wingfield,et al.  Variable resistance to Quambalaria pitereka in spotted gum reveal opportunities for disease screening , 2010, Australasian Plant Pathology.

[44]  H. Nahrung,et al.  Corymbia Species and Hybrids: Chemical and Physical Foliar Attributes and Implications for Herbivory , 2009, Journal of Chemical Ecology.

[45]  M. Wingfield,et al.  Infection and disease development of Quambalaria spp. on Corymbia and Eucalyptus species , 2009 .

[46]  L. Lamari Assess 2.0 , 2008 .

[47]  M. Shepherd,et al.  Genetic structuring in the spotted gum complex (genus Corymbia, section Politaria) , 2008 .

[48]  T. Burgess,et al.  Quambalaria species, including Q. coyrecup sp. nov., implicated in canker and shoot blight diseases causing decline of Corymbia species in the southwest of Western Australia. , 2008, Mycological research.

[49]  W. M. Gill,et al.  Anatomical and histochemical defence responses induced in juvenile leaves of Eucalyptus globulus and Eucalyptus nitens by Mycosphaerella infection , 2007 .

[50]  David J. Lee Achievements in forest tree genetic improvement in Australia and New Zealand 2: Development of Corymbia species and hybrids for plantations in eastern Australia , 2007 .

[51]  K. Little,et al.  Wood and fibre productivity potential of promising new eucalypt species for coastal Zululand, South Africa , 2007 .

[52]  V. Lattanzio,et al.  Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. , 2006 .

[53]  M. Steinbauer Specific leaf weight as an indicator of juvenile leaf toughness in Tasmanian bluegum (Eucalyptus globulus ssp. globulus): implications for insect defoliation , 2001 .

[54]  M. Wingfield,et al.  Eucalyptus Rust: A Disease with the Potential for Serious International Implications. , 1998, Plant disease.

[55]  A. House,et al.  Eucalyptus Leaf Oils Use Chemistry Distillation and Marketing , 1991 .

[56]  J. G. Roddick Antifungal activity of plant steroids , 1987 .

[57]  P. Ladiges A Comparative Study of Trichomes in Angophora Cav. And Eucalyptus L'hérit. - A Question of Homology , 1984 .

[58]  D. J. Carr,et al.  Oil glands and ducts in Eucalyptus L'Hérit. II. Development and structure of oil glands in the embryo , 1970 .

[59]  D. J. Carr,et al.  Oil glands and ducts in Eucalyptus L'Hérit. I. The phloem and the pith , 1969 .

[60]  P. Hunt Cuticular penetration by germinating uredospores , 1968 .