Dynamic interaction models of economic equilibrium

Abstract The paper develops a stochastic dynamic model of economic equilibrium with locally interacting agents. The main focus of the study is on the modeling of market interactions – those arising in connection with commodity exchange and regulated by price mechanisms. The mathematical framework is a control theory for random vector fields on directed graphs. The graphs involved serve to describe the spatio-temporal structure of commodity flows in the system. The main results are concerned with the existence, uniqueness and stability of stochastic dynamic equilibria.

[1]  K. Borch Economic Equilibrium Under Uncertainty , 1968 .

[2]  Werner Hildenbrand,et al.  Market Demand: Theory and Empirical Evidence , 1994 .

[3]  D. Gale On Optimal Development in a Multi-Sector Economy , 1967 .

[4]  Optimal growth without discounting , 2006 .

[5]  D. Gale A mathematical theory of optimal economic development , 1968 .

[6]  T. Lux The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions , 1998 .

[7]  Roy Radner,et al.  Optimal stationary consumption with stochastic production and resources , 1973 .

[8]  Victor Polterovich,et al.  Criteria for Monotonicity of Demand Functions , 1978 .

[9]  M. Shubik,et al.  Convex structures and economic theory , 1968 .

[10]  Rabah Amir,et al.  STOCHASTIC VERSION OF POLTEROVICH'S MODEL: EXPONENTIAL TURNPIKE THEOREMS FOR EQUILIBRIUM PATHS , 1999 .

[11]  Lars Peter Hansen,et al.  Advances in economics and econometrics: Theory and applications, eighth world congress, volume II , 2003 .

[12]  Igor V. Evstigneev,et al.  Stochastic models of control and economic dynamics , 1987 .

[13]  William A. Brock,et al.  Discrete Choice with Social Interactions , 2001 .

[14]  E. B. Dynkin STOCHASTIC CONCAVE DYNAMIC PROGRAMMING , 1972 .

[15]  R. Rockafellar,et al.  Stochastic convex programming: Kuhn-Tucker conditions , 1975 .

[16]  Alain Haurie,et al.  On Existence of Overtaking Optimal Trajectories Over an Infinite Time Horizon , 1976, Math. Oper. Res..

[17]  C. Hommes Chapter 23 Heterogeneous Agent Models in Economics and Finance , 2006 .

[18]  Equilibrium Trajectories of Economic Growth , 1983 .

[19]  D. Boyce,et al.  Spatial interaction, transportation, and interregional commodity flow models , 1987 .

[20]  Leigh Tesfatsion,et al.  Handbook of Computational Economics, Volume 2: Agent-Based Computational Economics (Handbook of Computational Economics) , 2006 .

[21]  Controlled Random Fields on an Oriented Graph , 1989 .

[22]  Cars H. Hommes,et al.  Financial markets as nonlinear adaptive evolutionary systems , 2001 .

[23]  Roy Radner,et al.  Equilibrium under uncertainty , 1993 .

[24]  Markov Fields over Countable Partially Ordered Sets: Extrema and Splitting , 1994 .

[25]  Steven N. Durlauf,et al.  Interactions-Based Models , 2000 .

[26]  C. L. Van,et al.  Handbook on Optimal Growth 1 , 2006 .

[27]  E. Glaeser,et al.  Non-Market Interactions , 2000 .

[28]  L. Blume The Statistical Mechanics of Strategic Interaction , 1993 .

[29]  W. Brock On Existence of Weakly Maximal Programmes in a Multi-Sector Economy , 1970 .

[30]  Nicolaas J. Vriend,et al.  Evolving market structure: An ACE model of price dispersion and loyalty , 2001 .

[31]  C. Hommes Heterogeneous Agent Models in Economics and Finance , 2005 .

[32]  Michael I. Taksar,et al.  Equilibrium States of Random Economies with Locally Interacting Agents and Solutions to Stochastic Variational Inequalities in 〈L1,L∞〉 , 2002, Ann. Oper. Res..

[33]  William A. Brock,et al.  A rational route to randomness , 1997 .

[34]  M. Marchesi,et al.  Scaling and criticality in a stochastic multi-agent model of a financial market , 1999, Nature.

[35]  H. Föllmer Random economies with many interacting agents , 1974 .

[36]  Randal J. Verbrugge INTERACTIVE-AGENT ECONOMIES: AN ELUCIDATIVE FRAMEWORK AND SURVEY OF RESULTS , 2003, Macroeconomic Dynamics.

[37]  Martin Anthony,et al.  Mathematics for Economics and Finance: Mathematical models in economics , 1996 .

[38]  Itzhak Zilcha,et al.  Optimal growth in a stochastic environment: Some sensitivity and turnpike results , 1987 .

[39]  A. Kirman,et al.  Stochastic Communication and Coalition Formation , 1986 .

[40]  Peter Nijkamp,et al.  The economics of complex spatial systems , 1998 .

[41]  W. Arthur,et al.  The Economy as an Evolving Complex System II , 1988 .

[42]  A. Nagurney Network Economics: A Variational Inequality Approach , 1992 .

[43]  W. Härdle,et al.  Empirical evidence on the law of demand , 1991 .

[44]  Beth E Allen Some Stochastic Processes of Interdependent Demand and Technological Diffusion of an Innovation Exhibiting Externalities Among Adopters , 1982 .

[45]  Robert J. Vanderbei,et al.  Optimal stopping and supermartingales over partially ordered sets , 1981 .

[46]  L. McKenzie,et al.  Optimal economic growth, turnpike theorems and comparative dynamics , 1986 .

[47]  Yannis M. Ioannides Topologies of social interactions , 2006 .

[48]  Terry L. Friesz,et al.  A Variational Inequality Formulation of the Dynamic Network User Equilibrium Problem , 1993, Oper. Res..

[49]  S. Durlauf Statistical Mechanics Approaches to Socioeconomic Behavior , 1996 .

[50]  Michael I. Taksar,et al.  Stochastic equilibria on graphs,I , 1992 .

[51]  G. Weisbuch,et al.  Market Organisation and Trading Relationships , 2000 .

[52]  Leonard J. Mirman,et al.  Optimal economic growth and uncertainty: The discounted case , 1972 .

[53]  Stopping rules and tactics for processes indexed by a directed set , 1981 .

[54]  C. Preston Gibbs States on Countable Sets , 1974 .

[55]  Yakar Kannai A characterization of monotone individual demand functions , 1989 .

[56]  Lawrence E. Blume,et al.  Equilibrium Concepts for Social Interaction Models , 2003, IGTR.

[57]  Alan Kirman,et al.  The economy as an evolving network , 1997 .

[58]  Hal R. Varian,et al.  Information rules - a strategic guide to the network economy , 1999 .

[59]  Tapan Mitra,et al.  Intertemporal allocation with a non-convex technology: The aggregative framework , 1982 .

[60]  K. Schenk-Hoppé,et al.  The Von Neumann-Gale Growth Model and its Stochastic Generalization , 2006 .

[61]  Ulrich Horst,et al.  Equilibria in systems of social interactions , 2006, J. Econ. Theory.

[62]  M. Dempster,et al.  Balanced states in stochastic economies with locally interacting agents , 1998 .

[63]  T. Bewley,et al.  AN INTEGRATION OF EQUILIBRIUM THEORY AND TURNPIKE THEORY , 1982 .