Understanding metal binding in neuromedin C

[1]  W. Bal,et al.  N-Terminal Cu-Binding Motifs (Xxx-Zzz-His, Xxx-His) and Their Derivatives: Chemistry, Biology and Medicinal Applications. , 2018, Chemistry.

[2]  Kathryn L Haas,et al.  Specific Histidine Residues Confer Histatin Peptides with Copper-Dependent Activity against Candida albicans. , 2017, Biochemistry.

[3]  Saumitra Gajjar,et al.  Neuromedin: An insight into its types, receptors and therapeutic opportunities. , 2017 .

[4]  Vladimir N Uversky,et al.  Nickel impact on human health: An intrinsic disorder perspective. , 2016, Biochimica et biophysica acta.

[5]  A. Keller,et al.  Isothermal titration microcalorimetry to determine the thermodynamics of metal ion removal by magnetic nanoparticle sorbents , 2016 .

[6]  S. Enomoto,et al.  Enhanced stability of Cu(2+)-ATCUN complexes under physiologically relevant conditions by insertion of structurally bulky and hydrophobic amino acid residues into the ATCUN motif. , 2016, Dalton transactions.

[7]  S. Srichairatanakool,et al.  Copper(II) binding properties of hepcidin , 2016, JBIC Journal of Biological Inorganic Chemistry.

[8]  K. Pauwels,et al.  Conformational ensembles of neuromedin C reveal a progressive coil-helix transition within a binding-induced folding mechanism. , 2015 .

[9]  Thomas J. Paul,et al.  Hybrid peptide ATCUN-sh-Buforin: Influence of the ATCUN charge and stereochemistry on antimicrobial activity. , 2015, Biochimie.

[10]  S. Kaler,et al.  Wilson's disease and other neurological copper disorders , 2015, The Lancet Neurology.

[11]  P. di Nardo,et al.  Histatins: salivary peptides with copper(II)‐ and zinc(II)‐binding motifs , 2014, The FEBS journal.

[12]  W. Bal,et al.  Binding of transition metal ions to albumin: sites, affinities and rates. , 2013, Biochimica et biophysica acta.

[13]  D. Wyrzykowski,et al.  Investigation of metal–buffer interactions using isothermal titration calorimetry , 2013, Journal of Thermal Analysis and Calorimetry.

[14]  Xiaole Kong,et al.  Iron speciation in the cytosol: an overview. , 2013, Dalton transactions.

[15]  P. Apostoli,et al.  Neurotoxicity of cobalt , 2012, Human & experimental toxicology.

[16]  M. Winterhalter,et al.  Thermodynamic study of Cu2+ binding to the DAHK and GHK peptides by isothermal titration calorimetry (ITC) with the weaker competitor glycine , 2011, JBIC Journal of Biological Inorganic Chemistry.

[17]  W. Bal,et al.  Salivary histatin-5, a physiologically relevant ligand for Ni(II) ions. , 2011, Journal of inorganic biochemistry.

[18]  Kathryn L Haas,et al.  Model peptides provide new insights into the role of histidine residues as potential ligands in human cellular copper acquisition via Ctr1. , 2011, Journal of the American Chemical Society.

[19]  D. Ward,et al.  Characterization of the transition-metal-binding properties of hepcidin. , 2010, The Biochemical journal.

[20]  K. Franz,et al.  A prochelator activated by beta-secretase inhibits Abeta aggregation and suppresses copper-induced reactive oxygen species formation. , 2010, Journal of the American Chemical Society.

[21]  C. Jacob,et al.  Metal trafficking: from maintaining the metal homeostasis to future drug design. , 2009, Metallomics : integrated biometal science.

[22]  J. Hunt,et al.  Direct measurement of free copper in serum or plasma ultrafiltrate. , 2009, American journal of clinical pathology.

[23]  J. Forman-Kay,et al.  NMR structure of neuromedin C, a neurotransmitter with an amino terminal CuII-, NiII-binding (ATCUN) motif. , 2009, The journal of peptide research : official journal of the American Peptide Society.

[24]  H. Hiramatsu,et al.  Evidence for the cation-pi interaction between Cu2+ and tryptophan. , 2008, Journal of the American Chemical Society.

[25]  R. Roesler,et al.  Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy. , 2007, Annals of oncology : official journal of the European Society for Medical Oncology.

[26]  E. Long,et al.  Influence of stereochemistry and redox potentials on the single- and double-strand DNA cleavage efficiency of Cu(II) and Ni(II) Lys-Gly-His-derived ATCUN metallopeptides. , 2007, Journal of the American Chemical Society.

[27]  W. Bal,et al.  Human serum albumin coordinates Cu(II) at its N-terminal binding site with 1 pM affinity , 2007, JBIC Journal of Biological Inorganic Chemistry.

[28]  J. Gitlin,et al.  Copper homeostasis in the CNS , 2006, Molecular Neurobiology.

[29]  L. Helm,et al.  Inorganic and bioinorganic solvent exchange mechanisms. , 2005, Chemical reviews.

[30]  T. Tamm,et al.  Calculation of hydration enthalpies of aqueous transition metal cations using two coordination shells and central ion substitution , 2004 .

[31]  P. Młynarz,et al.  Copper and nickel complex-formation equilibria with Lys/Gly/His/ Lys, a fragment of the matricellular protein SPARC , 2002 .

[32]  Yi Zhang,et al.  Thermodynamic and spectroscopic study of Cu(II) and Ni(II) binding to bovine serum albumin , 2002, JBIC Journal of Biological Inorganic Chemistry.

[33]  A. Krężel,et al.  Short peptides are not reliable models of thermodynamic and kinetic properties of the N-terminal metal binding site in serum albumin. , 2002, European journal of biochemistry.

[34]  J. Grogan,et al.  Is salivary histatin 5 a metallopeptide? , 2001, Biochimica et biophysica acta.

[35]  M. Vasconcelos,et al.  Evaluation of n-substituted aminosulfonic acid pH buffers with a morpholinic ring for cadmium and lead speciation studies by electroanalytical techniques , 1999 .

[36]  H. Kozłowski,et al.  Specific structure–stability relations in metallopeptides , 1999 .

[37]  P. Gans,et al.  Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species , 1999 .

[38]  D. Thiele,et al.  Copper-binding motifs in catalysis, transport, detoxification and signaling. , 1997, Chemistry & biology.

[39]  B. Sarkar,et al.  Amino Terminal Cu(II)- and Ni(II)-Binding (ATCUN) Motif of Proteins and Peptides: Metal Binding, DNA Cleavage, and Other Properties† , 1997 .

[40]  P. Kuzmič,et al.  Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. , 1996, Analytical biochemistry.

[41]  J. Barbosa,et al.  PKPOT, a program for the potentiometric study of ionic equilibria in aqueous and non-aqueous media , 1995 .

[42]  B. Sarkar,et al.  Neuromedin C binds Cu(II) and Ni(II) via the ATCUN motif: implications for the CNS and cancer growth. , 1995, Biochemical and biophysical research communications.

[43]  P. Brehm,et al.  Cloning and functional characterization of a complementary DNA encoding the murine fibroblast bombesin/gastrin-releasing peptide receptor. , 1990, Molecular endocrinology.

[44]  N. Minamino,et al.  Neuromedin C: a bombesin-like peptide identified in porcine spinal cord. , 1984, Biochemical and biophysical research communications.

[45]  R. J. Williams,et al.  Order of Stability of Metal Complexes , 1948, Nature.

[46]  R. Jensen,et al.  Mammalian Bombesin Receptors : Nomenclature , Distribution , Pharmacology , Signaling , and Functions in Normal and Disease States , 2008 .

[47]  H. Ohki‐Hamazaki,et al.  Development and function of bombesin-like peptides and their receptors. , 2005, The International journal of developmental biology.

[48]  J. Knight,et al.  Reference values for nickel concentrations in human tissues and bile. , 1987, American journal of industrial medicine.

[49]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .