Distributed Arithmetic on a Quantum Multicomputer

We evaluate the performance of quantum arithmetic algorithms run on a distributed quantum computer (a quantum multicomputer). We vary the node capacity and I/O capabilities, and the network topology. The tradeoff of choosing between gates executed remotely, through "tele-ported gates" on entangled pairs of qubits (telegate), versus exchanging the relevant qubits via quantum teleportation, then executing the algorithm using local gates (tele-data), is examined. We show that the teledata approach performs better, and that carry-ripple adders perform well when the teleportation block is decomposed so that the key quantum operations can be parallelized. A node size of only a few logical qubits performs adequately provided that the nodes have two transceiver qubits. A linear network topology performs acceptably for a broad range of system sizes and performance parameters. We therefore recommend pursuing small, high-I/O bandwidth nodes and a simple network. Such a machine will run Shor's algorithm for factoring large numbers efficiently

[1]  P. Love,et al.  Type II quantum algorithms , 2005, quant-ph/0506244.

[2]  T. Spiller,et al.  Quantum computation by communication , 2005, quant-ph/0509202.

[3]  Ashok V. Krishnamoorthy,et al.  Optically Augmented 3-D Computer: System Technology and Architecture , 1997, J. Parallel Distributed Comput..

[4]  Mark Oskin,et al.  An evaluation framework and instruction set architecture for ion-trap based quantum micro-architectures , 2005, 32nd International Symposium on Computer Architecture (ISCA'05).

[5]  A. Steane,et al.  Quantum Computing with Trapped Ions, Atoms and Light , 2000, quant-ph/0004053.

[6]  R. V. Meter,et al.  Fast quantum modular exponentiation , 2004, quant-ph/0408006.

[7]  A. Steane Quantum computing with trapped ions, atoms and light , 2001 .

[8]  J. Johansson,et al.  Vacuum Rabi oscillations in a macroscopic superconducting qubit oscillator system. , 2005, Physical review letters.

[9]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[10]  Lov K. Grover Quantum Telecomputation , 1997 .

[11]  T. Spiller,et al.  An introduction to quantum information processing: applications and realizations , 2005 .

[12]  H. Mabuchi,et al.  Programmable logic devices in experimental quantum optics , 2002, quant-ph/0203143.

[13]  D. DiVincenzo Quantum gates and circuits , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[15]  F. Jelezko,et al.  Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. , 2004, Physical review letters.

[16]  Frederic T. Chong,et al.  The effect of communication costs in solid-state quantum computing architectures , 2003, SPAA '03.

[17]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[18]  Charles L. Seitz,et al.  Multicomputers: message-passing concurrent computers , 1988, Computer.

[19]  R. Jozsa,et al.  On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[21]  J. Yepez TYPE-II QUANTUM COMPUTERS , 2001 .

[22]  C. Nuzman,et al.  1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss , 2003, IEEE Photonics Technology Letters.

[23]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[24]  Y. Lim,et al.  Repeat-until-success quantum computing using stationary and flying qubits (14 pages) , 2005, quant-ph/0508218.

[25]  Barenco,et al.  Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[26]  R. Van Meter Fast quantum modular exponentiation (12 pages) , 2005 .

[27]  Mark Oskin,et al.  Architectural implications of quantum computing technologies , 2006, ACM J. Emerg. Technol. Comput. Syst..

[28]  Kae Nemoto,et al.  Weak nonlinearities: a new route to optical quantum computation , 2005, quant-ph/0507084.

[29]  Michael A. Nielsen Simple Rules for a Complex Quantum World , 2003 .

[30]  Milos D. Ercegovac,et al.  Digital Arithmetic , 2003, Wiley Encyclopedia of Computer Science and Engineering.

[31]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[32]  Kae Nemoto,et al.  Quantum error correction via robust probe modes , 2006 .

[33]  Frederic T. Chong,et al.  Building quantum wires: the long and the short of it , 2003, 30th Annual International Symposium on Computer Architecture, 2003. Proceedings..

[34]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and EPR channels , 1993 .

[35]  Preskill,et al.  Efficient networks for quantum factoring. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[36]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[37]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[38]  Samuel J. Lomonaco, Jr.,et al.  Distributed quantum computing: a distributed Shor algorithm , 2004, SPIE Defense + Commercial Sensing.

[39]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[40]  M. Lukin,et al.  Fault-tolerant quantum repeaters with minimal physical resources, and implementations based on single photon emitters , 2005, quant-ph/0502112.

[41]  J. Cirac,et al.  Distributed quantum computation over noisy channels , 1998, quant-ph/9803017.

[42]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[43]  A. Steane Overhead and noise threshold of fault-tolerant quantum error correction , 2002, quant-ph/0207119.

[44]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[45]  D. Matsukevich,et al.  Quantum State Transfer Between Matter and Light , 1999, Science.

[46]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[47]  John K. Stockton,et al.  Adaptive homodyne measurement of optical phase. , 2002, Physical review letters.

[48]  Thomas G. Draper,et al.  A new quantum ripple-carry addition circuit , 2004, quant-ph/0410184.

[49]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[50]  F. Schmidt-Kaler,et al.  Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer , 2003, Nature.

[51]  Andrew Steane How to build a 300 bit, 1 Gop quantum computer , 2004 .

[52]  Robert M. Jopson,et al.  System design for large-scale ion trap quantum information processor , 2005, Quantum Inf. Comput..

[53]  M. Mehring,et al.  Entanglement between an electron and a nuclear spin 1/2. , 2002, Physical review letters.

[54]  Colin P. Williams,et al.  Ultimate zero and one - computing at the quantum frontier , 2012 .

[55]  Thomas G. Draper,et al.  A logarithmic-depth quantum carry-lookahead adder , 2006, Quantum Inf. Comput..

[56]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[57]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .

[58]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[59]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[60]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[61]  Harvard Scott Hinton,et al.  Design of a terabit free-space photonic backplane for parallel computing , 1995, Proceedings of Second International Workshop on Massively Parallel Processing Using Optical Interconnections.

[62]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[63]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.