Review of Large Spacecraft Deployable Membrane Antenna Structures

The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic forming. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different tensioning systems have emerged successively, including single Miura–Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures, materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.

[1]  Sergio Pellegrino,et al.  Deployable membrane reflectors , 2002 .

[2]  Jaroslaw Sobieszczanski-Sobieski,et al.  Structures, Structural Dynamics, and Materials Conference and Exhibit , 2001 .

[3]  Xilun Ding,et al.  A Network of Type III Bricard Linkages , 2015, Journal of Mechanisms and Robotics.

[4]  M. Zawadzki,et al.  Large Aperture, Scanning, L-Band SAR , 2011 .

[5]  Houfei Fang,et al.  Self-Rigidizable Space Inflatable Boom , 2002 .

[6]  Yanju Liu,et al.  Shape memory polymers and their composites in aerospace applications: a review , 2014 .

[7]  Yiqun Zhang,et al.  Optimization design combined with coupled structural–electrostatic analysis for the electrostatically controlled deployable membrane reflector , 2015 .

[8]  Y. Rahmat-Samii,et al.  A history of reflector antenna development: Past, present and future , 2009, 2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC).

[9]  Zongquan Deng,et al.  Mobile Assemblies of Large Deployable Mechanisms , 2012 .

[10]  Congsi Wang,et al.  Development of Spaceborne Deployable Active Phased Array Antennas , 2016 .

[11]  Fu Gong-yi Pre-stress Introduction Effects and Influence Factors Investigation for the Space Planar Film Reflect-array , 2010 .

[12]  Costa Cassapakis,et al.  Inflatable structures technology development overview , 1995 .

[13]  R. E. Freeland,et al.  Large Inflatable Deployable Antenna Flight Experiment Results , 1997 .

[14]  Michael Sinapius,et al.  Deployable Composite Booms for Various Gossamer Space Structures , 2011 .

[15]  John Huang,et al.  Development of a three-meter Ka-band reflectarray antenna , 2002 .

[16]  Houfei Fang,et al.  Actuator grouping optimization on flexible space reflectors , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[17]  Feng Gao,et al.  Gait planning for a quadruped robot with one faulty actuator , 2015 .

[18]  James D. Moore,et al.  Design Evaluation of a Large Aperture Deployable Antenna , 2006 .

[19]  Wan Zhi-min,et al.  ADVANCES OF THE STUDY ON WRINKLES OF SPACE MEMBRANE STURCUTES , 2006 .

[20]  R. E. Freeland,et al.  Significance of the Inflatable Antenna Experiment Technology , 1998 .

[21]  J. Huang,et al.  Development of an inflatable SAR engineering model , 2001 .

[22]  Xilun Ding,et al.  A new family of deployable mechanisms based on the Hoekens linkage , 2014 .

[23]  Yu Shen,et al.  Large SAR Membrane Antenna Deployable Structure Design and Dynamic Simulation , 2007 .

[24]  Steeve Montminy,et al.  Testing of a Deployable SAR Membrane Antenna Mechanical Prototype , 2008 .

[25]  Gyula Greschik,et al.  Sensitivity Study of Precision Pressurized Membrane Reflector Deformations , 2001 .

[26]  R. E. Freeland,et al.  Development of flight hardware for a large, inflatable-deployable antenna experiment , 1996 .

[27]  John K. H. Lin,et al.  AN INFLATABLE MICROSTRIP REFLECTARRAY CONCEPT FOR KA-BAND APPLICATIONS , 2000 .

[28]  Dale Beasley,et al.  Large Area Membrane Apertures for Space Applications, Fabrication and Mechanical Testing , 2017 .

[29]  John Huang,et al.  In-Space Deployable Reflectarray Antenna: Current and Future , 2008 .

[30]  Eastwood Im,et al.  Prospects of Large Deployable Reflector Antennas for a New Generation of Geostationary Doppler Weather Radar Satellites , 2007 .

[31]  Hiraku Sakamoto,et al.  EVALUATION OF CABLE SUSPENDED MEMBRANE STRUCTURES FOR WRINKLE-FREE DESIGN , 2003 .

[32]  Yang Chao-hui,et al.  Design and fabrication of new type reflect array antenna , 2008 .

[33]  John Huang,et al.  Development of a 7-meter inflatable reflectarray antenna , 2004 .

[34]  Hiraku Sakamoto,et al.  Advanced Cable Boundary Layer Design in Membrane Structures for Dynamic Wrinkle Reduction , 2005 .

[35]  M. S. Grahne,et al.  The Development of Inflatable Space Radar Reflectarrays , 1999 .

[36]  Xilun Ding,et al.  Design and analysis of a metamorphic mechanism cell for multistage orderly deployable/retractable mechanism , 2017 .

[37]  Michael Sinapius,et al.  Design and Sizing of a 40m² Deployable Membrane SAR Space Antenna , 2012 .

[38]  Yang Chen Design on Double Frequency and Wide Band Microstrip Reflectarray Antenna , 2012 .

[39]  Robert R. Romanofsky,et al.  Thin Film Antenna Development and Optimization , 2006 .

[40]  Christian Hühne,et al.  The Design and Test of the GOSSAMER-1 Boom Deployment Mechanisms Engineering Model , 2015 .

[41]  Jinguo Liu,et al.  A Brief Survey on Inflatable Deployment Space Structures’ Research and Development , 2012 .

[42]  Fei Guo,et al.  Global dynamic modeling of electro-hydraulic 3-UPS/S parallel stabilized platform by bond graph , 2016 .

[43]  M. C. Lou,et al.  DEVELOPMENT OF AN INFLATABLE SPACE SYNTHETIC APERTURE RADAR , 1998 .

[44]  John Huang,et al.  Design and Technologies Development for an Eight-Meter Inflatable Reflectarray Antenna , 2006 .

[45]  J. Huang,et al.  A One-Meter X-Band Inflatable Reflectarray Antenna , 1998 .

[46]  Weihua Zhang,et al.  Collaborative simulation method with spatiotemporal synchronization process control , 2016 .

[47]  D. Jin,et al.  Analytical investigation of dynamics of inflatable parabolic membrane reflector , 2015 .

[48]  J. Huang,et al.  The development of inflatable array antennas , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[49]  Houfei Fang,et al.  Catenary systems for membrane structures , 2001 .

[50]  J. Heald,et al.  Experimental Investigations to Support a Multi-Layer Deployable Membrane Structure for Space Antennae , 2005 .

[51]  Feng Gao,et al.  Electrode grouping optimization of electrostatic forming membrane reflector antennas , 2015 .

[52]  James L. Gaspar,et al.  Structural Test and Analysis of a Hybrid Inflatable Antenna , 2007 .

[53]  Oscar S. Alvarez-Salazar,et al.  Pointing Architecture of SMAP’s Large Spinning Antenna , 2013 .

[54]  John Huang,et al.  A 1-M X-BAND INFLATABLE REFLECTARRAY ANTENNA , 1999 .

[55]  James Moore,et al.  Large and High Precision Inflatable Membrane Reflector , 2010 .

[56]  John Huang,et al.  Dynamic Analysis of Large In-Space Deployable Membrane Antennas , 2006 .

[57]  Keith A. Seffen,et al.  Folding and deployment of curved tape springs , 2000 .

[58]  Yongtang Li,et al.  Advances in compact manufacturing for shape and performance controllability of large-scale components-a review , 2017 .

[59]  Houfei Fang,et al.  Deployment study of a self-rigidizable inflatable boom , 2003 .

[60]  Hiroki Nakanishi,et al.  Development of Stereo Camera System for Accurate Observation of Deployable Membranes onboard CubeSat , 2017 .

[61]  Hui Yang,et al.  Topology structure synthesis and analysis of spatial pyramid deployable truss structures for satellite SAR antenna , 2014 .

[62]  Eastwood Im,et al.  Concept Study of a 35-m Spherical Reflector System for NEXRAD in Space Application , 2006 .

[63]  Carbone Giuseppe,et al.  Experimental characterization of a binary actuated parallel manipulator , 2016 .

[64]  S. Pellegrinot,et al.  Deployable membrane reflectors with offset configuration , 1999 .

[65]  Xin Li,et al.  Design of a type of deployable/retractable mechanism using friction self-locking joint units , 2015 .

[66]  K. Senda,et al.  Wrinkle Generation Without Bifurcation in a Shear-Enforced Rectangular Membrane with Free Boundaries , 2015 .

[67]  A. W. Love,et al.  Inflatable space antennas-a brief overview , 1998, 1998 IEEE Aerospace Conference Proceedings (Cat. No.98TH8339).

[68]  S. Naboulsi,et al.  Investigation of Geometric Imperfection in Inflatable Aerospace Structures , 2004 .

[69]  Hiraku Sakamoto,et al.  Dynamic Wrinkle Reduction Strategies for Cable Suspended Membrane Structures , 2004 .

[70]  Zongquan Deng,et al.  Modeling and analysis of a large deployable antenna structure , 2014 .

[71]  Wanping Zheng,et al.  Dynamic and Vibration Analysis of a SAR Membrane Antenna , 2007 .

[72]  John Huang,et al.  The Development of Large Flat Inflatable Antennna for Deep-Space Communications , 2004 .

[73]  Guanxiong Yu Precision Analysis and Shape Adjustment of Inflatable Antenna , 2006 .

[74]  Frank Baginski,et al.  Effect of Boundary Support and Reflector Dimensions on Inflatable Parabolic Antenna Performance , 2012 .

[75]  Siu-Seong Law,et al.  Numerical analysis of wrinkle-influencing factors of thin membranes , 2016 .

[76]  Xilun Ding,et al.  Approximation of Cylindrical Surfaces With Deployable Bennett Networks , 2016 .