The parallel search bench ZRAM and its applications

Distributed and parallel computation is, on the one hand, the cheapest way to increaseraw computing power. Turning parallelism into a useful tool for solving new problems, onthe other hand, presents formidable challenges to computer science. We believe that parallelcomputation will spread among general users mostly through the ready availability of convenientand powerful program libraries. In contrast to general‐purpose languages, a programlibrary is specialized towards a well‐defined class of problems and algorithms. This narrowfocus permits developers to optimize algorithms, once and for all, for parallel computers ofa variety of common architectures. This paper presents ZRAM, a portable parallel library ofexhaustive search algorithms, as a case study that proves the feasibility of achieving simultaneouslythe goals of portability, efficiency, and convenience of use. Examples of massivecomputations successfully performed with the help of ZRAM illustrate its capabilities anduse.

[1]  Alexander Reinefeld,et al.  Enhanced Iterative-Deepening Search , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[3]  Ken Thompson Chess Endgames Vol. 1 , 1991, J. Int. Comput. Games Assoc..

[4]  Adrian Brüngger,et al.  Solving hard combinatorial optimization problems in parallel , 1998 .

[5]  K. Appel,et al.  The Solution of the Four-Color-Map Problem , 1977 .

[6]  William Gropp,et al.  Skjellum using mpi: portable parallel programming with the message-passing interface , 1994 .

[7]  Manfred K. Warmuth,et al.  NxN Puzzle and Related Relocation Problem , 1990, J. Symb. Comput..

[8]  Guy L. Steele,et al.  The High Performance Fortran Handbook , 1993 .

[9]  Teodor Gabriel Crainic,et al.  PARALLEL BRANCH-AND-BOUND ALGORITHMS: SURVEY AND SYNTHESIS , 1993 .

[10]  Manfred K. Warmuth,et al.  Finding a Shortest Solution for the N × N Extension of the 15-PUZZLE Is Intractable , 1986, AAAI.

[11]  Friedemann Mattern,et al.  Experience with a New Distributed Termination Detection Algorithm , 1987, WDAG.

[12]  Komei Fukuda,et al.  Double Description Method Revisited , 1995, Combinatorics and Computer Science.

[13]  Ralph Udo Gasser,et al.  Harnessing computational resources for efficient exhaustive search , 1995 .

[14]  Ceder,et al.  Ground states of a ternary fcc lattice model with nearest- and next-nearest-neighbor interactions. , 1994, Physical review. B, Condensed matter.

[15]  Udi Manber,et al.  DIB—a distributed implementation of backtracking , 1987, TOPL.

[16]  Ken Thompson Chess Endgames Vol. 2 , 1992, J. Int. Comput. Games Assoc..

[17]  Ralph Gasser,et al.  All the Needles in a Haystack: Can Exhaustive Search Overcome Combinatorial Chaos? , 1995, Computer Science Today.

[18]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[19]  D. Knuth Estimating the efficiency of backtrack programs. , 1974 .

[20]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[21]  Jack Dongarra,et al.  A User''s Guide to PVM Parallel Virtual Machine , 1991 .

[22]  David Avis,et al.  A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra , 1991, SCG '91.

[23]  Ambros Marzetta,et al.  ZRAM: a library of parallel search algorithms and its use in enumeration and combinatorial optimization , 1998 .

[24]  Bernard Gendron,et al.  Parallel Branch-and-Branch Algorithms: Survey and Synthesis , 1994, Oper. Res..

[25]  Victor J. Rayward-Smith,et al.  Branch-and-bound as a higher-order function , 1991, Ann. Oper. Res..

[26]  Salah Dowaji,et al.  Building a parallel branch and bound library , 1996, Solving Combinatorial Optimization Problems in Parallel.

[27]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..

[28]  Lewis Stiller Exploiting Symmetry on Parallel Architectures , 1995, J. Int. Comput. Games Assoc..

[29]  Afonso Ferreira,et al.  Parallel best-first branch-and-bound in discrete optimization: a framework , 1995, Solving Combinatorial Optimization Problems in Parallel.

[30]  Jack Dongarra,et al.  PVM: Parallel virtual machine: a users' guide and tutorial for networked parallel computing , 1995 .