Proteome-wide solubility and thermal stability profiling reveals distinct regulatory roles for ATP

[1]  J. Shepherd,et al.  Cycle. , 2020, The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry.

[2]  Martin Eisenacher,et al.  The PRIDE database and related tools and resources in 2019: improving support for quantification data , 2018, Nucleic Acids Res..

[3]  D. L. Weeks,et al.  Dual roles for ATP in the regulation of phase separated protein aggregates in Xenopus oocyte nucleoli , 2018, eLife.

[4]  R. Pappu,et al.  A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins , 2018, Cell.

[5]  Peer Bork,et al.  Pervasive Protein Thermal Stability Variation during the Cell Cycle , 2018, Cell.

[6]  P. Grandi,et al.  Multiplexed Proteome Dynamics Profiling Reveals Mechanisms Controlling Protein Homeostasis , 2018, Cell.

[7]  Chern Han Yong,et al.  Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells , 2018, Science.

[8]  U. Sauer,et al.  A Map of Protein-Metabolite Interactions Reveals Principles of Chemical Communication , 2018, Cell.

[9]  Omar Wagih,et al.  ggseqlogo: a versatile R package for drawing sequence logos , 2017, Bioinform..

[10]  J. Zuber,et al.  DNA Cross-Bridging Shapes a Single Nucleus from a Set of Mitotic Chromosomes , 2017, Cell.

[11]  A. Hyman,et al.  ATP as a biological hydrotrope , 2017, Science.

[12]  E. Wieschaus,et al.  Independent active and thermodynamic processes govern the nucleolus assembly in vivo , 2017, Proceedings of the National Academy of Sciences.

[13]  Lukasz P. Kozlowski,et al.  Proteome-pI: proteome isoelectric point database , 2016, Nucleic Acids Res..

[14]  M. Bantscheff,et al.  Thermal profiling reveals phenylalanine hydroxylase as an off-target of panobinostat. , 2016, Nature chemical biology.

[15]  M. Fraser,et al.  Structural basis for the binding of succinate to succinyl-CoA synthetase. , 2016, Acta crystallographica. Section D, Structural biology.

[16]  Anna V. Taubenberger,et al.  A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy , 2016, eLife.

[17]  Peer Bork,et al.  Spatiotemporal variation of mammalian protein complex stoichiometries , 2016, Genome Biology.

[18]  Anthony Barsic,et al.  ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure , 2016, Cell.

[19]  G. Drewes,et al.  Thermal proteome profiling monitors ligand interactions with cellular membrane proteins , 2015, Nature Methods.

[20]  Peter Tompa,et al.  Polymer physics of intracellular phase transitions , 2015, Nature Physics.

[21]  G. Drewes,et al.  Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry , 2015, Nature Protocols.

[22]  G. Superti-Furga,et al.  Proteome-wide small molecule and metabolite interaction mapping , 2015, Nature Methods.

[23]  N. Sharma,et al.  NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability , 2015, Nucleic acids research.

[24]  Timothy D. Craggs,et al.  Phase Transition of a Disordered Nuage Protein Generates Environmentally Responsive Membraneless Organelles , 2015, Molecular cell.

[25]  Y. Lam,et al.  A new rapid method for isolating nucleoli. , 2015, Methods in molecular biology.

[26]  Florent Baty,et al.  Dose-Response Analysis Using R , 2015, PloS one.

[27]  A. Hyman,et al.  Liquid-liquid phase separation in biology. , 2014, Annual review of cell and developmental biology.

[28]  G. Drewes,et al.  Tracking cancer drugs in living cells by thermal profiling of the proteome , 2014, Science.

[29]  Jeroen Krijgsveld,et al.  Ultrasensitive proteome analysis using paramagnetic bead technology , 2014, Molecular systems biology.

[30]  C. Ottmann,et al.  Modulators of protein-protein interactions. , 2014, Chemical reviews.

[31]  U. Sauer,et al.  Coordination of microbial metabolism , 2014, Nature Reviews Microbiology.

[32]  Marcus Bantscheff,et al.  Ion coalescence of neutron encoded TMT 10-plex reporter ions. , 2014, Analytical chemistry.

[33]  C. O’Hern,et al.  The Bacterial Cytoplasm Has Glass-like Properties and Is Fluidized by Metabolic Activity , 2014, Cell.

[34]  P. Nordlund,et al.  Monitoring Drug Target Engagement in Cells and Tissues Using the Cellular Thermal Shift Assay , 2013, Science.

[35]  Angus I. Lamond,et al.  Modulation of Higher Order Chromatin Conformation in Mammalian Cell Nuclei Can Be Mediated by Polyamines and Divalent Cations , 2013, PloS one.

[36]  G. Labesse,et al.  MgATP regulates allostery and fiber formation in IMPDHs. , 2013, Structure.

[37]  G. Drewes,et al.  Affinity profiling of the cellular kinome for the nucleotide cofactors ATP, ADP, and GTP. , 2013, ACS chemical biology.

[38]  Lukasz A. Kurgan,et al.  D2P2: database of disordered protein predictions , 2012, Nucleic Acids Res..

[39]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[40]  I. Vetter,et al.  Structure-function relationships of the G domain, a canonical switch motif. , 2011, Annual review of biochemistry.

[41]  A. Hyman,et al.  Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes , 2011, Proceedings of the National Academy of Sciences.

[42]  A. Hyman,et al.  Germline P Granules Are Liquid Droplets That Localize by Controlled Dissolution/Condensation , 2009, Science.

[43]  Robert D. Finn,et al.  InterPro: the integrative protein signature database , 2008, Nucleic Acids Res..

[44]  D. Walsh,et al.  Protein Aggregation in the Brain: The Molecular Basis for Alzheimer’s and Parkinson’s Diseases , 2008, Molecular medicine.

[45]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[46]  D. Tabb,et al.  Proteomic parsimony through bipartite graph analysis improves accuracy and transparency. , 2007, Journal of proteome research.

[47]  R. Nichols,et al.  The vaccinia-related kinases phosphorylate the N' terminus of BAF, regulating its interaction with DNA and its retention in the nucleus. , 2006, Molecular biology of the cell.

[48]  John D. Storey,et al.  Significance analysis of time course microarray experiments. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Anthony K. L. Leung,et al.  Nucleolar proteome dynamics , 2005, Nature.

[50]  T. Traut,et al.  Physiological concentrations of purines and pyrimidines , 1994, Molecular and Cellular Biochemistry.

[51]  Martin Vingron,et al.  Variance stabilization applied to microarray data calibration and to the quantification of differential expression , 2002, ISMB.

[52]  T. Banaś,et al.  Fluorescence Studies on Glyceraldehyde- 3-phosphate Dehydrogenase from Bovine Heart Muscle , 2001, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[53]  A. Karlsson,et al.  Phosphorylation of uridine and cytidine nucleoside analogs by two human uridine-cytidine kinases. , 2001, Molecular pharmacology.

[54]  M Krause,et al.  Barrier-to-autointegration factor (BAF) bridges DNA in a discrete, higher-order nucleoprotein complex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Dietmar Schomburg,et al.  GTP plus water mimic ATP in the active site of protein kinase CK2 , 1999, Nature Structural Biology.

[56]  I R Vetter,et al.  Nucleoside triphosphate-binding proteins: different scaffolds to achieve phosphoryl transfer , 1999, Quarterly Reviews of Biophysics.

[57]  J. Kolega,et al.  Regulatory light chain phosphorylation and the assembly of myosin II into the cytoskeleton of microcapillary endothelial cells. , 1999, Cell motility and the cytoskeleton.

[58]  F. Buttgereit,et al.  A hierarchy of ATP-consuming processes in mammalian cells. , 1995, The Biochemical journal.

[59]  P. R. Sibbald,et al.  The P-loop--a common motif in ATP- and GTP-binding proteins. , 1990, Trends in biochemical sciences.

[60]  T. Roche,et al.  Mechanism of pyruvate inhibition of kidney pyruvate dehydrogenasea kinase and synergistic inhibition by pyruvate and ADP. , 1979, The Journal of biological chemistry.

[61]  E. Newsholme,et al.  The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates. , 1975, The Biochemical journal.

[62]  B. Sanwal Regulatory mechanisms involving nicotinamide adenine nucleotides as allosteric effectors. I. Control characteristics of malate dehydrogenase. , 1969, The Journal of biological chemistry.

[63]  R. Rodnight,et al.  Phosvitin kinase from brain: activation by ions and subcellular distribution. , 1964, The Biochemical journal.

[64]  G. Plaut,et al.  ACTIVATION AND INHIBITION OF DPN-LINKED ISOCITRATE DEHYDROGENASE OF HEART BY CERTAIN NUCLEOTIDES. , 1963, Biochemistry.