Nucleation-mediated growth of chiral 3D organic-inorganic perovskite single crystals.

[1]  V. Blum,et al.  The Structural Origin of Chiroptical Properties in Perovskite Nanocrystals with Chiral Organic Ligands , 2022, Advanced Functional Materials.

[2]  O. Shoseyov,et al.  Spin-Induced Organization of Cellulose Nanocrystals. , 2022, Biomacromolecules.

[3]  Weiqing Yang,et al.  Liquid Nitrogen Passivation for Deep-Blue Perovskite Quantum Dots with Nearly Unit Quantum Yield , 2022, The Journal of Physical Chemistry C.

[4]  Xitao Liu,et al.  Realization of vis-NIR Dual-Modal Circularly Polarized Light Detection in Chiral Perovskite Bulk Crystals. , 2021, Journal of the American Chemical Society.

[5]  Xue Jin,et al.  A new strategy to achieve enhanced upconverted circularly polarized luminescence in chiral perovskite nanocrystals , 2021, Nano Research.

[6]  Shichao Wu,et al.  Chirality-Dependent Second-order Nonlinear Optical Effects in 1D Organic-Inorganic Hybrid Perovskites Bulk Single Crystal. , 2021, Angewandte Chemie.

[7]  Dehui Li,et al.  Recent Progress of Chiral Perovskites: Materials, Synthesis, and Properties , 2021, Advanced materials.

[8]  D. Mitzi,et al.  Structural descriptor for enhanced spin-splitting in 2D hybrid perovskites , 2021, Nature Communications.

[9]  Lin Sui Li,et al.  Molecular Disorder Induces Unusual Phase Transition in a Potential 2D Chiral Ferroelectric Perovskite. , 2021, Chemistry.

[10]  Xiaoyuan Zhou,et al.  A polymer controlled nucleation route towards the generalized growth of organic-inorganic perovskite single crystals , 2021, Nature Communications.

[11]  P. Sellin,et al.  Solution-Grown Formamidinium Hybrid Perovskite (FAPbBr3) Single Crystals for α-Particle and γ-Ray Detection at Room Temperature. , 2021, ACS applied materials & interfaces.

[12]  S. Harvey,et al.  Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode , 2021, Science.

[13]  M. Michalska,et al.  Impact of Anion Impurities in Commercial PbI2 on Lead Halide Perovskite Films and Solar Cells , 2021 .

[14]  Vincent M. Le Corre,et al.  Revealing Charge Carrier Mobility and Defect Densities in Metal Halide Perovskites via Space-Charge-Limited Current Measurements , 2021, ACS energy letters.

[15]  Shikuan Yang,et al.  Laurionite Competes with 2D Ruddlesden-Popper Perovskites During the Saturation Recrystallization Process. , 2021, ACS applied materials & interfaces.

[16]  R. Naaman,et al.  Evidence for New Enantiospecific Interaction Force in Chiral Biomolecules , 2021, Chem.

[17]  X. Tao,et al.  Anisotropic Performance of High-Quality MAPbBr3 Single-Crystal Wafers. , 2020, ACS applied materials & interfaces.

[18]  Atula S. D. Sandanayaka,et al.  Stable room-temperature continuous-wave lasing in quasi-2D perovskite films , 2020, Nature.

[19]  Shuangquan Zang,et al.  Intercluster aurophilicity-driven aggregation lighting circularly polarized luminescence of chiral gold clusters , 2020, Nano Research.

[20]  P. Blom,et al.  Space-charge-limited electron and hole currents in hybrid organic-inorganic perovskites , 2020, Nature Communications.

[21]  M. S. Jeong,et al.  Static Rashba Effect by Surface Reconstruction and Photon Recycling in the Dynamic Indirect Gap of APbBr3 (A = Cs, CH3NH3) Single Crystals. , 2020, Journal of the American Chemical Society.

[22]  Shikuan Yang,et al.  Ultrastable Laurionite Spontaneously Encapsulates Reduced-dimensional Lead Halide Perovskites. , 2020, Nano letters.

[23]  M. Saidaminov,et al.  Chiral-perovskite optoelectronics , 2020, Nature Reviews Materials.

[24]  G. Fang,et al.  Room-temperature liquid diffused separation induced crystallization for high-quality perovskite single crystals , 2020, Nature Communications.

[25]  M. Yuan,et al.  A Chiral Reduced‐Dimension Perovskite for an Efficient Flexible Circularly Polarized Light Photodetector , 2020, Angewandte Chemie.

[26]  Wenping Hu,et al.  Bulk Chiral Halide Perovskite Single Crystals for Active Circular Dichroism and Circularly Polarized Luminescence. , 2020, The journal of physical chemistry letters.

[27]  Shuzhou Li,et al.  Chirality evolution from sub-1 nm nanowires to the macroscopically helical structure. , 2020, Journal of the American Chemical Society.

[28]  Han Zhang,et al.  Chiral Perovskites: Promising Materials toward Next-Generation Optoelectronics. , 2019, Small.

[29]  Guangda Niu,et al.  Circularly polarized light detection using chiral hybrid perovskite , 2019, Nature Communications.

[30]  Guankui Long,et al.  Theoretical Prediction of Chiral 3D Hybrid Organic–Inorganic Perovskites , 2019, Advanced materials.

[31]  R. Xiong,et al.  The First 2D Homochiral Lead Iodide Perovskite Ferroelectrics: [R‐ and S‐1‐(4‐Chlorophenyl)ethylammonium]2PbI4 , 2019, Advanced materials.

[32]  Haiquan Liu,et al.  Stereochemically active lead chloride enantiomers mediated by homochiral organic cation , 2019, Polyhedron.

[33]  Jiawei Lv,et al.  Distinct Excitonic Circular Dichroism between Wurtzite and Zincblende CdSe Nanoplatelets. , 2018, Nano letters.

[34]  S. Ng,,et al.  Chiroptical Activity from an Achiral Biological Metal-Organic Framework. , 2018, Journal of the American Chemical Society.

[35]  L. Quan,et al.  Spin control in reduced-dimensional chiral perovskites , 2018, Nature Photonics.

[36]  P. Müller‐Buschbaum,et al.  Boosting Tunable Blue Luminescence of Halide Perovskite Nanoplatelets through Postsynthetic Surface Trap Repair. , 2018, Nano letters.

[37]  Jun Wang,et al.  Bilayered Hybrid Perovskite Ferroelectric with Giant Two-Photon Absorption. , 2018, Journal of the American Chemical Society.

[38]  L. Martiradonna Riddles in perovskite research , 2018, Nature materials.

[39]  X. Qu,et al.  Cross-fibrillation of insulin and amyloid β on chiral surfaces: Chirality affects aggregation kinetics and cytotoxicity , 2018, Nano Research.

[40]  D. Mitzi,et al.  Two-Dimensional Lead(II) Halide-Based Hybrid Perovskites Templated by Acene Alkylamines: Crystal Structures, Optical Properties, and Piezoelectricity. , 2017, Inorganic chemistry.

[41]  M. Leonov,et al.  Chiral Optical Properties of Tapered Semiconductor Nanoscrolls. , 2017, ACS nano.

[42]  Q. Yan,et al.  Progress in organic-inorganic hybrid halide perovskite single crystal: growth techniques and applications , 2017, Science China Materials.

[43]  R. Friend,et al.  Chemically diverse and multifunctional hybrid organic–inorganic perovskites , 2017 .

[44]  X. You,et al.  Colloidal Organometal Halide Perovskite (MAPbBrxI3−x, 0≤x≤3) Quantum Dots: Controllable Synthesis and Tunable Photoluminescence , 2016, Scientific Reports.

[45]  M. Kovalenko,et al.  Efficient Blue Electroluminescence Using Quantum-Confined Two-Dimensional Perovskites. , 2016, ACS nano.

[46]  Song Jin,et al.  Screening in crystalline liquids protects energetic carriers in hybrid perovskites , 2016, Science.

[47]  J. Hutchison,et al.  Continuous Growth of Metal Oxide Nanocrystals: Enhanced Control of Nanocrystal Size and Radial Dopant Distribution. , 2016, ACS nano.

[48]  Brookhaven National Laboratory,et al.  Direct Observation of Dynamic Symmetry Breaking above Room Temperature in Methylammonium Lead Iodide Perovskite , 2016, 1606.09267.

[49]  Anton Van der Ven,et al.  Energy Landscape of Molecular Motion in Cubic Methylammonium Lead Iodide from First-Principles , 2016 .

[50]  R. V. Van Duyne,et al.  Optical activity from racemates. , 2016, Nature materials.

[51]  Erkki Alarousu,et al.  CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector. , 2015, The journal of physical chemistry letters.

[52]  Alain Goriely,et al.  High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization , 2015, Nature Communications.

[53]  Zhehao Huang,et al.  Optically active chiral Ag nanowires , 2015, Science China Materials.

[54]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[55]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[56]  Kristian Sommer Thygesen,et al.  BANDGAP CALCULATIONS AND TRENDS OF ORGANOMETAL HALIDE PEROVSKITES , 2014 .

[57]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[58]  Justin R. Caram,et al.  Persistent Interexcitonic Quantum Coherence in CdSe Quantum Dots , 2014 .

[59]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[60]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[61]  H. Kawasaki,et al.  Surfactant-free single-nano-sized colloidal Cu nanoparticles for use as an active catalyst in Ullmann-coupling reaction. , 2012, Chemical communications.

[62]  H. Hyuga,et al.  Grinding-induced homochirality in crystal growth , 2011 .

[63]  Xiangxing Xu,et al.  Size- and surface-determined transformations: from ultrathin InOOH nanowires to uniform c-In2O3 nanocubes and rh-In2O3 nanowires. , 2009, Inorganic chemistry.

[64]  Werner Kaminsky,et al.  Optical rotation of achiral compounds. , 2008, Angewandte Chemie.

[65]  Joost VandeVondele,et al.  Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. , 2007, The Journal of chemical physics.

[66]  L. Qi,et al.  Degree of supersaturation-regulated chiral symmetry breaking in one crystal. , 2007, The journal of physical chemistry. B.

[67]  C. Viedma Selective Chiral Symmetry Breaking during Crystallization: Parity Violation or Cryptochiral Environment in Control? , 2007 .

[68]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[69]  D. Frenkel,et al.  Onset of heterogeneous crystal nucleation in colloidal suspensions , 2004, Nature.

[70]  Michele Parrinello,et al.  A hybrid Gaussian and plane wave density functional scheme , 1997 .

[71]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[72]  John K. Hall,et al.  Kinetics of chiral symmetry breaking in crystallization , 1993 .

[73]  D. Kondepudi,et al.  Chiral Symmetry Breaking in Sodium Chlorate Crystallizaton , 1990, Science.

[74]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[75]  Ignacio Tinoco,et al.  Differential scattering of circularly polarized light by the helical sperm head from the octopus Eledone cirrhosa , 1982, Nature.

[76]  I. Tinoco,et al.  Circular intensity differential scattering of light by helical structures. I. Theory , 1980 .

[77]  J. K. O'loane Optical activity in small molecules, nonenantiomorphous crystals, and nematic liquid crystals , 1980 .

[78]  N. Fletcher Size Effect in Heterogeneous Nucleation , 1958 .

[79]  Ming Liu,et al.  Low-temperature-gradient crystallization for multi-inch high-quality perovskite single crystals for record performance photodetectors , 2019, Materials Today.

[80]  Dan Qu,et al.  Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization , 2018, Advanced materials.

[81]  Namchul Cho,et al.  Inorganic Lead Halide Perovskite Single Crystals: Phase‐Selective Low‐Temperature Growth, Carrier Transport Properties, and Self‐Powered Photodetection , 2017 .

[82]  Hiroshi Suga,et al.  Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II) , 1990 .

[83]  R. Becker,et al.  Kinetische Behandlung der Keimbildung in übersättigten Dämpfen , 1935 .