Supramolecular assemblies of cucurbit[n]urils and 4-aminopyridine controlled by cucurbit[n]uril size (n = 5, 6, 7 and 8)

[1]  Meilin Liu,et al.  Synthesis and characterization of a sensitive and selective Fe3+ fluorescent sensor based on novel sulfonated calix[4]arene-based host-guest complex , 2021, Chinese Chemical Letters.

[2]  Meilin Liu,et al.  Polymeric self-assembled cucurbit[n]urils: Synthesis, structures and applications , 2021 .

[3]  Yunqian Zhang,et al.  Pyridine Detection Using Supramolecular Organic Frameworks Incorporating Cucurbit[10]uril. , 2021, ACS applied materials & interfaces.

[4]  Z. Tao,et al.  Detecting Pesticide Dodine by Displacement of Fluorescent Acridine from Cucurbit[10]uril Macrocycle. , 2020, Journal of agricultural and food chemistry.

[5]  Wei‐Yin Sun,et al.  Recent Advances in Potential Application of Cucurbit[n]urils and Their Derivatives in Capture of Hazardous Chemicals. , 2020, Chemistry.

[6]  Jing-lan Kan,et al.  Facile preparation and application of luminescent cucurbit[10]uril-based porous supramolecular frameworks , 2019, Sensors and Actuators B: Chemical.

[7]  X. Montalban,et al.  Restoring Axonal Function with 4-Aminopyridine: Clinical Efficacy in Multiple Sclerosis and Beyond , 2018, CNS Drugs.

[8]  P. Brugger,et al.  Positive effects of fampridine on cognition, fatigue and depression in patients with multiple sclerosis over 2 years , 2018, Journal of Neurology.

[9]  Kai Chen,et al.  Development of hydroxylated cucurbit[n]urils, their derivatives and potential applications , 2017 .

[10]  Yang Lan,et al.  Cucurbit[n]uril-Based Microcapsules Self-Assembled within Microfluidic Droplets: A Versatile Approach for Supramolecular Architectures and Materials , 2017, Accounts of chemical research.

[11]  Oren A Scherman,et al.  Cucurbituril-Based Molecular Recognition. , 2015, Chemical reviews.

[12]  Z. Tao,et al.  Direct syntheses of a series of cucurbit[n]uril-anchored polyacrylamides , 2015 .

[13]  A. Kaifer Toward reversible control of cucurbit[n]uril complexes. , 2014, Accounts of chemical research.

[14]  Lyle Isaacs,et al.  Stimuli Responsive Systems Constructed Using Cucurbit[n]uril-Type Molecular Containers , 2014, Accounts of chemical research.

[15]  Z. Tao,et al.  Cucurbit[n]uril-based coordination chemistry: from simple coordination complexes to novel poly-dimensional coordination polymers. , 2013, Chemical Society reviews.

[16]  Uwe Pischel,et al.  Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. , 2011, Chemical reviews.

[17]  D. Snodin Genotoxic Impurities: From Structural Alerts to Qualification , 2010 .

[18]  Lyle Isaacs,et al.  The cucurbit[n]uril family. , 2005, Angewandte Chemie.

[19]  Jae Wook Lee,et al.  Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. , 2003, Accounts of chemical research.

[20]  D. Wolfe,et al.  Preclinical trial of 4-aminopyridine in patients with chronic spinal cord injury , 1993, Paraplegia.

[21]  E. Watson Determination of 4-aminopyridine in plasma. , 1981, Analytical biochemistry.

[22]  Meilin Liu,et al.  Progress in host–guest macrocycle/pesticide research: Recognition, detection, release and application , 2022, Coordination Chemistry Reviews.

[23]  Andrew M. Johnson,et al.  The effect of Fampridine-SR on cognitive fatigue in a randomized double-blind crossover trial in patients with MS. , 2017, Multiple sclerosis and related disorders.