Discussion of Boosting Papers
暂无分享,去创建一个
Trevor Hastie | Robert Tibshirani | Ji Zhu | Saharon Rosset | Jerome H. Friedman | R. Tibshirani | T. Hastie | J. Friedman | S. Rosset | Ji Zhu | Saharon Rosset
[1] I. Johnstone,et al. Maximum Entropy and the Nearly Black Object , 1992 .
[2] I. Johnstone,et al. Ideal spatial adaptation by wavelet shrinkage , 1994 .
[3] I. Johnstone,et al. Wavelet Shrinkage: Asymptopia? , 1995 .
[4] Yoav Freund,et al. Experiments with a New Boosting Algorithm , 1996, ICML.
[5] Trevor Hastie,et al. Additive Logistic Regression : a Statistical , 1998 .
[6] J. Friedman. Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .
[7] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[8] J. Friedman. Greedy function approximation: A gradient boosting machine. , 2001 .
[9] J. Friedman. 1999 REITZ LECTURE GREEDY FUNCTION APPROXIMATION: A GRADIENT BOOSTING MACHINE' , 2001 .
[10] Shie Mannor,et al. The Consistency of Greedy Algorithms for Classification , 2002, COLT.
[11] Michael Elad,et al. Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[12] A. Tsybakov,et al. Optimal aggregation of classifiers in statistical learning , 2003 .
[13] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[14] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[15] Yi Lin. A note on margin-based loss functions in classification , 2004 .
[16] Ji Zhu,et al. Boosting as a Regularized Path to a Maximum Margin Classifier , 2004, J. Mach. Learn. Res..