The Brezzi-Pitkäranta stabilization scheme for the elasticity problem
暂无分享,去创建一个
Ying Dai | Dongyang Shi | Minghao Li | D. Shi | Minghao Li | Ying Dai
[1] Son-Young Yi. Nonconforming mixed finite element methods for linear elasticity using rectangular elements in two and three dimensions , 2005 .
[2] C. Carstensen,et al. Computational competition of symmetric mixed FEM in linear elasticity , 2011 .
[3] F. Brezzi,et al. On the Stabilization of Finite Element Approximations of the Stokes Equations , 1984 .
[4] Shangyou Zhang,et al. A Simple Conforming Mixed Finite Element for Linear Elasticity on Rectangular Grids in Any Space Dimension , 2013, Journal of Scientific Computing.
[5] Yinnian He,et al. A stabilized finite element method based on local polynomial pressure projection for the stationary Navier--Stokes equations , 2008 .
[6] Zhiqiang Cai,et al. Least-Squares Methods for Linear Elasticity , 2004, SIAM J. Numer. Anal..
[7] T. Hughes,et al. Two classes of mixed finite element methods , 1988 .
[8] D. Arnold,et al. RECTANGULAR MIXED FINITE ELEMENTS FOR ELASTICITY , 2005 .
[9] D. Arnold,et al. NONCONFORMING MIXED ELEMENTS FOR ELASTICITY , 2003 .
[10] A. Huerta,et al. Implementation of a stabilized finite element formulation for the incompressible Navier–Stokes equations based on a pressure gradient projection , 2001 .
[11] R. Codina,et al. A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation , 1997 .
[12] Roland Becker,et al. A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .
[13] Jun-Jue Hu,et al. LOWER ORDER RECTANGULAR NONCONFORMING MIXED FINITE ELEMENT FOR THE THREE-DIMENSIONAL ELASTICITY PROBLEM , 2009 .
[14] Shaochun Chen,et al. Conforming Rectangular Mixed Finite Elements for Elasticity , 2011, J. Sci. Comput..
[15] Gunar Matthies,et al. A UNIFIED CONVERGENCE ANALYSIS FOR LOCAL PROJECTION STABILISATIONS APPLIED TO THE OSEEN PROBLEM , 2007 .
[16] Son-Young Yi. A NEW NONCONFORMING MIXED FINITE ELEMENT METHOD FOR LINEAR ELASTICITY , 2006 .
[17] Douglas N. Arnold,et al. Mixed finite elements for elasticity , 2002, Numerische Mathematik.
[18] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[19] Jay Gopalakrishnan,et al. Symmetric Nonconforming Mixed Finite Elements for Linear Elasticity , 2011, SIAM J. Numer. Anal..
[20] Bernardo Cockburn,et al. A Mixed Finite Element Method for Elasticity in Three Dimensions , 2005, J. Sci. Comput..
[21] Jan Reininghaus,et al. The Arnold–Winther mixed FEM in linear elasticity. Part I: Implementation and numerical verification☆ , 2008 .
[22] Gerard Awanou. Two Remarks on Rectangular Mixed Finite Elements for Elasticity , 2012, J. Sci. Comput..
[23] Bernardo Cockburn,et al. A new elasticity element made for enforcing weak stress symmetry , 2010, Math. Comput..
[24] Douglas N. Arnold,et al. Mixed finite element methods for linear elasticity with weakly imposed symmetry , 2007, Math. Comput..
[25] Jun Hu,et al. Lower Order Rectangular Nonconforming Mixed Finite Elements for Plane Elasticity , 2007, SIAM J. Numer. Anal..
[26] C. Farhat,et al. Bubble Functions Prompt Unusual Stabilized Finite Element Methods , 1994 .
[27] Hongying Man,et al. The simplest mixed finite element method for linear elasticity in the symmetric formulation on $n$-rectangular grids , 2013, 1304.5428.
[28] Clark R. Dohrmann,et al. Stabilization of Low-order Mixed Finite Elements for the Stokes Equations , 2004, SIAM J. Numer. Anal..
[29] Douglas N. Arnold,et al. Finite elements for symmetric tensors in three dimensions , 2008, Math. Comput..
[30] D. Shi,et al. Superconvergence analysis of a stable conforming rectangular mixed finite elements for the linear elasticity problem , 2014 .
[31] L. Franca,et al. Error analysis of some Galerkin least squares methods for the elasticity equations , 1991 .
[32] Michel Fortin,et al. A minimal stabilisation procedure for mixed finite element methods , 2000, Numerische Mathematik.
[33] J. Douglas,et al. PEERS: A new mixed finite element for plane elasticity , 1984 .
[34] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[35] Pavel B. Bochev,et al. A Taxonomy of Consistently Stabilized Finite Element Methods for the Stokes Problem , 2004, SIAM J. Sci. Comput..
[36] T. Hughes. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .
[37] D. Arnold,et al. Mixed Finite Elements for Elasticity in the Stress-Displacement Formulation , 2002 .
[38] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[39] Johnny Guzmán. A Unified Analysis of Several Mixed Methods for Elasticity with Weak Stress Symmetry , 2010, J. Sci. Comput..