The Brezzi-Pitkäranta stabilization scheme for the elasticity problem

In this paper, we consider the elasticity problem based on the Hellinger-Reissner variational principle. We use the equal order linear and bilinear mixed finite element spaces to approximate the stress and the displacement, and develop a Brezzi-Pitkaranta stabilization method for the finite element space pairs to overcome the lack of the inf-sup condition, then we give the error estimates of the stabilization approximation scheme. At last, we implement two numerical examples to test the stability and effectiveness of the proposed method.

[1]  Son-Young Yi Nonconforming mixed finite element methods for linear elasticity using rectangular elements in two and three dimensions , 2005 .

[2]  C. Carstensen,et al.  Computational competition of symmetric mixed FEM in linear elasticity , 2011 .

[3]  F. Brezzi,et al.  On the Stabilization of Finite Element Approximations of the Stokes Equations , 1984 .

[4]  Shangyou Zhang,et al.  A Simple Conforming Mixed Finite Element for Linear Elasticity on Rectangular Grids in Any Space Dimension , 2013, Journal of Scientific Computing.

[5]  Yinnian He,et al.  A stabilized finite element method based on local polynomial pressure projection for the stationary Navier--Stokes equations , 2008 .

[6]  Zhiqiang Cai,et al.  Least-Squares Methods for Linear Elasticity , 2004, SIAM J. Numer. Anal..

[7]  T. Hughes,et al.  Two classes of mixed finite element methods , 1988 .

[8]  D. Arnold,et al.  RECTANGULAR MIXED FINITE ELEMENTS FOR ELASTICITY , 2005 .

[9]  D. Arnold,et al.  NONCONFORMING MIXED ELEMENTS FOR ELASTICITY , 2003 .

[10]  A. Huerta,et al.  Implementation of a stabilized finite element formulation for the incompressible Navier–Stokes equations based on a pressure gradient projection , 2001 .

[11]  R. Codina,et al.  A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation , 1997 .

[12]  Roland Becker,et al.  A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .

[13]  Jun-Jue Hu,et al.  LOWER ORDER RECTANGULAR NONCONFORMING MIXED FINITE ELEMENT FOR THE THREE-DIMENSIONAL ELASTICITY PROBLEM , 2009 .

[14]  Shaochun Chen,et al.  Conforming Rectangular Mixed Finite Elements for Elasticity , 2011, J. Sci. Comput..

[15]  Gunar Matthies,et al.  A UNIFIED CONVERGENCE ANALYSIS FOR LOCAL PROJECTION STABILISATIONS APPLIED TO THE OSEEN PROBLEM , 2007 .

[16]  Son-Young Yi A NEW NONCONFORMING MIXED FINITE ELEMENT METHOD FOR LINEAR ELASTICITY , 2006 .

[17]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  Jay Gopalakrishnan,et al.  Symmetric Nonconforming Mixed Finite Elements for Linear Elasticity , 2011, SIAM J. Numer. Anal..

[20]  Bernardo Cockburn,et al.  A Mixed Finite Element Method for Elasticity in Three Dimensions , 2005, J. Sci. Comput..

[21]  Jan Reininghaus,et al.  The Arnold–Winther mixed FEM in linear elasticity. Part I: Implementation and numerical verification☆ , 2008 .

[22]  Gerard Awanou Two Remarks on Rectangular Mixed Finite Elements for Elasticity , 2012, J. Sci. Comput..

[23]  Bernardo Cockburn,et al.  A new elasticity element made for enforcing weak stress symmetry , 2010, Math. Comput..

[24]  Douglas N. Arnold,et al.  Mixed finite element methods for linear elasticity with weakly imposed symmetry , 2007, Math. Comput..

[25]  Jun Hu,et al.  Lower Order Rectangular Nonconforming Mixed Finite Elements for Plane Elasticity , 2007, SIAM J. Numer. Anal..

[26]  C. Farhat,et al.  Bubble Functions Prompt Unusual Stabilized Finite Element Methods , 1994 .

[27]  Hongying Man,et al.  The simplest mixed finite element method for linear elasticity in the symmetric formulation on $n$-rectangular grids , 2013, 1304.5428.

[28]  Clark R. Dohrmann,et al.  Stabilization of Low-order Mixed Finite Elements for the Stokes Equations , 2004, SIAM J. Numer. Anal..

[29]  Douglas N. Arnold,et al.  Finite elements for symmetric tensors in three dimensions , 2008, Math. Comput..

[30]  D. Shi,et al.  Superconvergence analysis of a stable conforming rectangular mixed finite elements for the linear elasticity problem , 2014 .

[31]  L. Franca,et al.  Error analysis of some Galerkin least squares methods for the elasticity equations , 1991 .

[32]  Michel Fortin,et al.  A minimal stabilisation procedure for mixed finite element methods , 2000, Numerische Mathematik.

[33]  J. Douglas,et al.  PEERS: A new mixed finite element for plane elasticity , 1984 .

[34]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[35]  Pavel B. Bochev,et al.  A Taxonomy of Consistently Stabilized Finite Element Methods for the Stokes Problem , 2004, SIAM J. Sci. Comput..

[36]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[37]  D. Arnold,et al.  Mixed Finite Elements for Elasticity in the Stress-Displacement Formulation , 2002 .

[38]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[39]  Johnny Guzmán A Unified Analysis of Several Mixed Methods for Elasticity with Weak Stress Symmetry , 2010, J. Sci. Comput..