Surface modification of metal oxide nanocrystals for improved supercapacitors

TiO2 (anatase) nanocrystals were prepared and their surface was modified by sol–gel deposition of vanadium oxide species. The resulting surface-modified TiO2 combines the good properties of both materials and new, synergistic properties arise, resulting in an increased electrical conductivity, voltage window, specific capacitance, and cycling stability.

[1]  G. Bond,et al.  Vanadium oxide monolayer catalysts Preparation, characterization and catalytic activity , 1991 .

[2]  S. Martin,et al.  Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles , 1994 .

[3]  P. Forzatti,et al.  An EPR Study of the Surface Chemistry of the V2O5–WO3/TiO2Catalyst: Redox Behaviour and State of V(IV) , 1997 .

[4]  R. Howe,et al.  Spectroscopic investigation of vanadium speciation in vanadium-doped nanocrystalline anatase , 1997 .

[5]  Guido Busca,et al.  Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review , 1998 .

[6]  J. Morante,et al.  Charge Exchange Processes during the Open‐Circuit Deposition of Nickel on Silicon from Fluoride Solutions , 2000 .

[7]  P. Gómez‐Romero Hybrid Organic–Inorganic Materials—In Search of Synergic Activity , 2001 .

[8]  Bert M. Weckhuysen,et al.  Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis , 2003 .

[9]  Chi-Chang Hu,et al.  How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors , 2004 .

[10]  W. Yonggang,et al.  Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites , 2004 .

[11]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[12]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[13]  D. Bélanger,et al.  Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors , 2006 .

[14]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[15]  L. Čapek,et al.  V(V) species in supported catalysts: Analysis and performance in oxidative dehydrogenation of ethane , 2009 .

[16]  R. Holze,et al.  V2O5·0.6H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution , 2009 .

[17]  Malgorzata Witko,et al.  Theoretical Study of the Effect of (001) TiO2 Anatase Support on V2O5 , 2010 .

[18]  A. J. Frank,et al.  Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays. , 2010, Nano letters.

[19]  Weifeng Wei,et al.  Manganese oxide-based materials as electrochemical supercapacitor electrodes. , 2011, Chemical Society reviews.

[20]  P. Schmuki,et al.  Vertically aligned mixed V2O5-TiO2 nanotube arrays for supercapacitor applications. , 2011, Chemical communications.

[21]  C. Lokhande,et al.  Metal oxide thin film based supercapacitors , 2011 .

[22]  Akihiko Hirata,et al.  Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. , 2011, Nature nanotechnology.

[23]  Meihua Jin,et al.  High Pseudocapacitance from Ultrathin V2O5 Films Electrodeposited on Self‐Standing Carbon‐Nanofiber Paper , 2011 .