Gradient flow dynamics of two-phase biomembranes: Sharp interface variational formulation and finite element approximation

A finite element method for the evolution of a two-phase membrane in a sharp interface formulation is introduced. The evolution equations are given as an $L^2$--gradient flow of an energy involving an elastic bending energy and a line energy. In the two phases Helfrich-type evolution equations are prescribed, and on the interface, an evolving curve on an evolving surface, highly nonlinear boundary conditions have to hold. Here we consider both $C^0$-- and $C^1$--matching conditions for the surface at the interface. A new weak formulation is introduced, allowing for a stable semidiscrete parametric finite element approximation of the governing equations. In addition, we show existence and uniqueness for a fully discrete version of the scheme. Numerical simulations demonstrate that the approach can deal with a multitude of geometries. In particular, the paper shows the first computations based on a sharp interface description, which are not restricted to the axisymmetric case.

[1]  Q. Du,et al.  Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches , 2006, Journal of Mathematical Biology.

[2]  R. Nürnberg,et al.  The approximation of planar curve evolutions by stable fully implicit finite element schemes that equidistribute , 2011 .

[3]  Harald Garcke,et al.  Parametric Approximation of Surface Clusters driven by Isotropic and Anisotropic Surface Energies , 2010 .

[4]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[5]  Watt W. Webb,et al.  Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.

[6]  Z. C. Tu,et al.  A geometric theory on the elasticity of bio-membranes , 2004, cond-mat/0403309.

[7]  Michael Helmers,et al.  Convergence of an approximation for rotationally symmetric two-phase lipid bilayer membranes , 2015, 1603.05231.

[8]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[9]  Harald Garcke,et al.  ON THE STABLE NUMERICAL APPROXIMATION OF TWO-PHASE FLOW WITH INSOLUBLE SURFACTANT , 2013, 1311.4432.

[10]  Charles M. Elliott,et al.  A Surface Phase Field Model for Two-Phase Biological Membranes , 2010, SIAM J. Appl. Math..

[11]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[12]  Harald Garcke,et al.  Stable variational approximations of boundary value problems for Willmore flow with Gaussian curvature , 2017 .

[13]  Michael Helmers,et al.  Snapping elastic curves as a one-dimensional analogue of two-component lipid bilayers , 2016, 1603.00756.

[14]  Harald Garcke,et al.  ELASTIC FLOW WITH JUNCTIONS: VARIATIONAL APPROXIMATION AND APPLICATIONS TO NONLINEAR SPLINES , 2012 .

[15]  Harald Garcke,et al.  A parametric finite element method for fourth order geometric evolution equations , 2007, J. Comput. Phys..

[16]  C. M. Elliott,et al.  Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.

[17]  J. Nitsche,et al.  Boundary value problems for variational integrals involving surface curvatures , 1993 .

[18]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[19]  Gerhard Dziuk,et al.  Computational parametric Willmore flow , 2008, Numerische Mathematik.

[20]  Charles M. Elliott,et al.  Computation of Two-Phase Biomembranes with Phase Dependent Material Parameters Using Surface Finite Elements , 2013 .

[21]  Charles M. Elliott,et al.  Modeling and computation of two phase geometric biomembranes using surface finite elements , 2010, J. Comput. Phys..

[22]  Harald Garcke,et al.  Finite Element Approximation for the Dynamics of Fluidic Two-Phase Biomembranes , 2016, 1611.05343.

[23]  Harald Garcke,et al.  On the parametric finite element approximation of evolving hypersurfaces in R3 , 2008, J. Comput. Phys..

[24]  H. Garcke,et al.  Local well‐posedness for volume‐preserving mean curvature and Willmore flows with line tension , 2013, 1403.1132.

[25]  W. Webb,et al.  Membrane elasticity in giant vesicles with fluid phase coexistence. , 2005, Biophysical journal.

[26]  K. Deckelnick,et al.  Minimising a relaxed Willmore functional for graphs subject to boundary conditions , 2015, 1503.01275.

[27]  R. Lipowsky,et al.  Domain-induced budding of vesicles. , 1993, Physical review letters.

[28]  John Lowengrub,et al.  The effect of spontaneous curvature on a two-phase vesicle , 2015, Nonlinearity.

[29]  Neck geometry and shape transitions in vesicles with co-existing fluid phases: Role of Gaussian curvature stiffness vs. spontaneous curvature , 2009 .

[30]  Axel Voigt,et al.  Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Thomas Richter,et al.  Modeling and Computing of Deformation Dynamics of Inhomogeneous Biological Surfaces , 2013, SIAM J. Appl. Math..

[32]  G. Dziuk,et al.  An algorithm for evolutionary surfaces , 1990 .

[33]  M. Morandotti,et al.  Global minimizers for axisymmetric multiphase membranes , 2012, 1204.6673.

[34]  Michael Taylor,et al.  Partial Differential Equations I: Basic Theory , 1996 .

[35]  S. Schmidt,et al.  Shape derivatives for general objective functions and the incompressible Navier-Stokes equations , 2010 .

[36]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[37]  Michael Helmers,et al.  Kinks in two-phase lipid bilayer membranes , 2016, 1603.02721.

[38]  Z. C. Tu Challenges in theoretical investigations on configurations of lipid membranes , 2012 .

[39]  Harald Garcke,et al.  Computational Parametric Willmore Flow with Spontaneous Curvature and Area Difference Elasticity Effects , 2016, SIAM J. Numer. Anal..

[40]  R. Lipowsky,et al.  Shape transformations of vesicles with intramembrane domains. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  Anna Marciniak-Czochra,et al.  Bud-Neck Scaffolding as a Possible Driving Force in ESCRT-Induced Membrane Budding , 2015, Biophysical journal.