Projected subgradient techniques and viscosity methods for optimization with variational inequality constraints

In this paper, we propose an easily implementable algorithm in Hilbert spaces for solving some classical monotone variational inequality problem over the set of solutions of mixed variational inequalities. The proposed method combines two strategies: projected subgradient techniques and viscosity-type approximations. The involved stepsizes are controlled and a strong convergence theorem is established under very classical assumptions. Our algorithm can be applied for instance to some mathematical programs with complementarity constraints.

[1]  Alfredo N. Iusem,et al.  On the projected subgradient method for nonsmooth convex optimization in a Hilbert space , 1998, Math. Program..

[2]  I. V. Konnov,et al.  Mixed variational inequalities and economic equilibrium problems , 2002 .

[3]  Georgios E. Stavroulakis,et al.  New types of variational principles based on the notion of quasidifferentiability , 1992 .

[4]  Nan-Jing Huang,et al.  A projected subgradient method for solving generalized mixed variational inequalities , 2008, Oper. Res. Lett..

[5]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[6]  Jean-Jacques Strodiot,et al.  A Bundle Method for Solving Variational Inequalities , 2004, SIAM J. Optim..

[7]  Regina S. Burachik,et al.  A convergence result for an outer approximation scheme , 2003 .

[8]  Heinz H. Bauschke,et al.  A Weak-to-Strong Convergence Principle for Fejé-Monotone Methods in Hilbert Spaces , 2001, Math. Oper. Res..

[9]  Paul-Emile Maingé,et al.  A Hybrid Extragradient-Viscosity Method for Monotone Operators and Fixed Point Problems , 2008, SIAM J. Control. Optim..

[10]  W. Takahashi Nonlinear Functional Analysis , 2000 .

[11]  B. Halpern Fixed points of nonexpanding maps , 1967 .

[12]  A. Iusem On some properties of paramonotone operators. , 1998 .

[13]  Alexey F. Izmailov,et al.  An Active-Set Newton Method for Mathematical Programs with Complementarity Constraints , 2008, SIAM J. Optim..

[14]  Deren Han A New Hybrid Generalized Proximal Point Algorithm for Variational Inequality Problems , 2003, J. Glob. Optim..

[15]  M. Noor Auxiliary Principle Technique for Equilibrium Problems , 2004 .

[16]  Muhammad Aslam Noor Merit function for variational-like inequalitiets , 2000 .

[17]  Xiwen Lu,et al.  Hybrid methods for a class of monotone variational inequalities , 2009 .

[18]  Paul-Emile Maingé,et al.  Strong convergence of an iterative method for hierarchical fixed point problems , 2007 .

[19]  I. Yamada,et al.  Hybrid Steepest Descent Method for Variational Inequality Problem over the Fixed Point Set of Certain Quasi-nonexpansive Mappings , 2005 .

[20]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[21]  Van Hien Nguyen,et al.  Convergence of the Approximate Auxiliary Problem Method for Solving Generalized Variational Inequalities , 2004 .

[22]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[23]  Anatoly Antipin Solution methods for variational inequalities with coupled constraints , 2000 .

[24]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[25]  Igor V. Konnov,et al.  A Combined Relaxation Method for a Class of Nonlinear Variational Inequalities , 2002 .

[26]  P. Pardalos,et al.  Equilibrium problems : nonsmooth optimization and variational inequality models , 2004 .

[27]  Alfredo N. Iusem,et al.  Extension of Subgradient Techniques for Nonsmooth Optimization in Banach Spaces , 2001 .

[28]  P. Maingé Strong Convergence of Projected Subgradient Methods for Nonsmooth and Nonstrictly Convex Minimization , 2008 .

[29]  Yeol Je Cho,et al.  Algorithms of common solutions for variational inclusions, mixed equilibrium problems and fixed point problems , 2011, Eur. J. Oper. Res..