A Self-Assembled, Low-Cost, Microstructured Layer for Extremely Stretchable Gold Films.

We demonstrate a simple, low-cost, and green approach to deposit a microstructured coating on the silicone elastomer polydimethylsiloxane (PDMS) that can be coated with gold to produce highly stretchable and conductive films. The microstructured coating is fabricated using an aqueous emulsion of poly(vinyl acetate) (PVAc): common, commercially available white glue. The aqueous glue emulsion self-assembles on the PDMS surface to generate clustered PVAc globules, which can be conformally coated with gold. The microstructured surface provides numerous defect sites that localize strain when the structure is stretched, resulting in the initiation of numerous microcracks. As the structure is further elongated, the microcracks interact with one another, preventing long-range crack propagation and thus preserving the conduction pathway. The resistance of PDMS/glue/gold structures remains remarkably low (23 times the initial resistance) up to 65% elongation, making these structure useful as stretchable interconnects. Decreasing the concentration of the PVAc aqueous emulsion reduces the density of defect sites of the microstructure, which increases the change in resistance of the gold films with stretching. In this way, we can tune the resistance changes of the PDMS/glue/gold structures and increase their sensitivity to strain. We demonstrate the use of these structures as wearable, soft strain sensors.

[1]  J. Rogers,et al.  Ultrathin Films of Single‐Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects , 2009 .

[2]  J. Rogers,et al.  Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. , 2011, Nature materials.

[3]  Z. Suo,et al.  Deformability of thin metal films on elastomer substrates , 2006 .

[4]  C. Keplinger,et al.  25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters , 2013, Advanced materials.

[5]  John A. Rogers,et al.  Highly Sensitive Skin‐Mountable Strain Gauges Based Entirely on Elastomers , 2012 .

[6]  Sigurd Wagner,et al.  Stretchable Interconnects for Elastic Electronic Surfaces , 2005, Proceedings of the IEEE.

[7]  K. J. Stout,et al.  Comprehensive study of parameters for characterising three-dimensional surface topography: IV: Parameters for characterising spatial and hybrid properties , 1994 .

[8]  Zhenan Bao,et al.  Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes , 2012 .

[9]  Z. Suo,et al.  Stretchable gold conductors on elastomeric substrates , 2003 .

[10]  T. Someya,et al.  Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. , 2009, Nature materials.

[11]  Z. Suo,et al.  Metal films on polymer substrates stretched beyond 50 , 2007 .

[12]  Charles S. Smith Piezoresistance Effect in Germanium and Silicon , 1954 .

[13]  J. Coleman,et al.  Improved adhesive strength and toughness of polyvinyl acetate glue on addition of small quantities of graphene. , 2013, ACS applied materials & interfaces.

[14]  Yonggang Huang,et al.  Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays , 2009, Science.

[15]  T. Pardoen,et al.  Giant stretchability of thin gold films on rough elastomeric substrates , 2013 .

[16]  S. Wagner,et al.  Isotropically stretchable gold conductors on elastomeric substrates , 2011 .

[17]  Z. Suo,et al.  Stretchability of thin metal films on elastomer substrates , 2004 .

[18]  Yakov M. Tseytlin,et al.  Structural Synthesis in Precision Elasticity , 2006 .

[19]  Tricia Breen Carmichael,et al.  Stretchable Light‐Emitting Electrochemical Cells Using an Elastomeric Emissive Material , 2012, Advanced materials.

[20]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[21]  Sigurd Wagner,et al.  Stretchable wavy metal interconnects , 2004 .

[22]  S. Wagner,et al.  Controlling the morphology of gold films on poly(dimethylsiloxane). , 2010, ACS applied materials & interfaces.

[23]  John A. Rogers,et al.  Stretchable, Curvilinear Electronics Based on Inorganic Materials , 2010 .

[24]  S. Wagner,et al.  Fully elastic interconnects on nanopatterned elastomeric substrates , 2006, IEEE Electron Device Letters.

[25]  John A Rogers,et al.  Stretchable, Curvilinear Electronics Based on Inorganic Materials , 2010, Advanced materials.

[26]  S. Takayama,et al.  Fracture of metal coated elastomers , 2011 .

[27]  Tobias J. Hagge,et al.  Physics , 1929, Nature.

[28]  Sanat S Bhole,et al.  Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin , 2014, Science.

[29]  J. Vanfleteren,et al.  Design and Fabrication of Elastic Interconnections for Stretchable Electronic Circuits , 2007, IEEE Electron Device Letters.

[30]  Yonggang Huang,et al.  Silicon nanomembranes for fingertip electronics , 2012, Nanotechnology.

[31]  John A Rogers,et al.  A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime. , 2003, Journal of the American Chemical Society.

[32]  Zhibin Yu,et al.  Elastomeric polymer light-emitting devices and displays , 2013, Nature Photonics.

[33]  S. Hansson,et al.  Characterisation of Titanium Dental Implants I: Critical Assessment of Surface Roughness Parameters , 2010 .

[34]  Yonggang Huang,et al.  A curvy, stretchy future for electronics , 2009, Proceedings of the National Academy of Sciences.

[35]  G. S. Holister,et al.  Strain gauge technology , 1982 .

[36]  T. Someya,et al.  Stretchable, Large‐area Organic Electronics , 2010, Advanced materials.

[37]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[38]  A. Vaz,et al.  Nanostructured Gold Thin Films: Young Modulus Measurement , 2003 .

[39]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[40]  Sigurd Wagner,et al.  Mechanisms of reversible stretchability of thin metal films on elastomeric substrates , 2006 .

[41]  Stéphanie P Lacour,et al.  Microstructured silicone substrate for printable and stretchable metallic films. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[42]  Z. Suo,et al.  Delocalizing strain in a thin metal film on a polymer substrate , 2005 .

[43]  A. Pineau,et al.  Failure of metals III: Fracture and fatigue of nanostructured metallic materials , 2016 .

[44]  Christopher S. Chen,et al.  High‐Conductivity Elastomeric Electronics , 2004 .

[45]  Benjamin C. K. Tee,et al.  Electronic Properties of Transparent Conductive Films of PEDOT:PSS on Stretchable Substrates , 2012 .