Possibilistic and fuzzy clustering methods for robust analysis of non-precise data

Abstract This work focuses on robust clustering of data affected by imprecision. The imprecision is managed in terms of fuzzy sets. The clustering process is based on the fuzzy and possibilistic approaches. In both approaches the observations are assigned to the clusters by means of membership degrees. In fuzzy clustering the membership degrees express the degrees of sharing of the observations to the clusters. In contrast, in possibilistic clustering the membership degrees are degrees of typicality. These two sources of information are complementary because the former helps to discover the best fuzzy partition of the observations while the latter reflects how well the observations are described by the centroids and, therefore, is helpful to identify outliers. First, a fully possibilistic k-means clustering procedure is suggested. Then, in order to exploit the benefits of both the approaches, a joint possibilistic and fuzzy clustering method for fuzzy data is proposed. A selection procedure for choosing the parameters of the new clustering method is introduced. The effectiveness of the proposal is investigated by means of simulated and real-life data.

[1]  James M. Keller,et al.  Analysis and efficient implementation of a linguistic fuzzy c-means , 2002, IEEE Trans. Fuzzy Syst..

[2]  Pierpaolo D'Urso,et al.  A weighted fuzzy c , 2006, Comput. Stat. Data Anal..

[3]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[4]  Miin-Shen Yang,et al.  On a class of fuzzy c-numbers clustering procedures for fuzzy data , 1996, Fuzzy Sets Syst..

[5]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[6]  P. Giordani,et al.  Component Models for Fuzzy Data , 2006 .

[7]  Pierpaolo D'Urso,et al.  Fuzzy and possibilistic clustering for fuzzy data , 2012, Comput. Stat. Data Anal..

[8]  Renato Coppi,et al.  Management of uncertainty in Statistical Reasoning: The case of Regression Analysis , 2008, Int. J. Approx. Reason..

[9]  Pierpaolo D'Urso,et al.  Three-way fuzzy clustering models for LR fuzzy time trajectories , 2003, Comput. Stat. Data Anal..

[10]  Mohammad Hossein Fazel Zarandi,et al.  A Fuzzy Clustering Model for Fuzzy Data with Outliers , 2010, Int. J. Fuzzy Syst. Appl..

[11]  Kuo-Lung Wu,et al.  Unsupervised possibilistic clustering , 2006, Pattern Recognit..

[12]  Pierpaolo D'Urso,et al.  Robust clustering of imprecise data , 2014 .

[13]  Miin-Shen Yang,et al.  Fuzzy clustering on LR-type fuzzy numbers with an application in Taiwanese tea evaluation , 2005, Fuzzy Sets Syst..

[14]  Mauro Barni,et al.  Comments on "A possibilistic approach to clustering" , 1996, IEEE Trans. Fuzzy Syst..

[15]  K. Jajuga L 1 -norm based fuzzy clustering , 1991 .

[16]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[17]  Didier Dubois,et al.  Statistical reasoning with set-valued information: Ontic vs. epistemic views , 2014, Int. J. Approx. Reason..

[18]  M. Sato,et al.  Fuzzy clustering model for fuzzy data , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[19]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[20]  Paolo Giordani,et al.  On possibilistic clustering with repulsion constraints for imprecise data , 2013, Inf. Sci..

[21]  James M. Keller,et al.  A possibilistic fuzzy c-means clustering algorithm , 2005, IEEE Transactions on Fuzzy Systems.

[22]  Thierry Denoeux,et al.  Clustering and classification of fuzzy data using the fuzzy EM algorithm , 2016, Fuzzy Sets Syst..

[23]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Thierry Denoeux,et al.  Clustering Fuzzy Data Using the Fuzzy EM Algorithm , 2010, SUM.

[25]  Jongwoo Kim,et al.  Application of the least trimmed squares technique to prototype-based clustering , 1996, Pattern Recognit. Lett..

[26]  Miin-Shen Yang,et al.  Fuzzy clustering procedures for conical fuzzy vector data , 1999, Fuzzy Sets Syst..

[27]  Witold Pedrycz,et al.  Two nonparametric models for fusing heterogeneous fuzzy data , 1998, IEEE Trans. Fuzzy Syst..

[28]  Wen-Liang Hung,et al.  Automatic clustering algorithm for fuzzy data , 2015 .

[29]  Ricardo J. G. B. Campello,et al.  A fuzzy extension of the silhouette width criterion for cluster analysis , 2006, Fuzzy Sets Syst..

[30]  Miin-Shen Yang,et al.  Fuzzy clustering algorithms for mixed feature variables , 2004, Fuzzy Sets Syst..

[31]  Miin-Shen Yang,et al.  Alternative c-means clustering algorithms , 2002, Pattern Recognit..

[32]  Witold Pedrycz,et al.  A parametric model for fusing heterogeneous fuzzy data , 1996, IEEE Trans. Fuzzy Syst..

[33]  María Asunción Lubiano,et al.  K-sample tests for equality of variances of random fuzzy sets , 2012, Comput. Stat. Data Anal..

[34]  Ana Colubi,et al.  SMIRE Research Group at the University of Oviedo: A distance-based statistical analysis of fuzzy number-valued data , 2014, Int. J. Approx. Reason..

[35]  James C. Bezdek,et al.  A mixed c-means clustering model , 1997, Proceedings of 6th International Fuzzy Systems Conference.

[36]  Sadaaki Miyamoto,et al.  Fuzzy clustering of data with uncertainties using minimum and maximum distances based on L/sub 1/ metric , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[37]  Rajesh N. Davé,et al.  Characterization and detection of noise in clustering , 1991, Pattern Recognit. Lett..

[38]  Anupam Joshi,et al.  Low-complexity fuzzy relational clustering algorithms for Web mining , 2001, IEEE Trans. Fuzzy Syst..

[39]  A. Gordaliza,et al.  Robustness Properties of k Means and Trimmed k Means , 1999 .

[40]  Khaled Mellouli,et al.  Clustering Approach Using Belief Function Theory , 2006, AIMSA.

[41]  Ana Colubi,et al.  Fuzziness in data analysis: Towards accuracy and robustness , 2015, Fuzzy Sets Syst..