일차원 패치 학습을 이용한 고속 내용 기반 보간 기법

본 논문은 저해상도 입력 영상을 고해상도 영상으로 복원하는 고속 학습기반 보간 기법을 제안한다. 일반적인 학습기반 초고해상도 기법은 여러 종류의 저해상도 영상과 고해상도 영상의 상관성을 통해 고주파 정보를 사전에 학습하고, 합성 단계에서 학습한 정보를 이용해 임의의 저해상도 영상을 고해상도 영상으로 복원한다. 이런 기존 학습기반 초 고해상도 기법은 방대한 양의 학습된 정보를 메모리에 저장해야만 하는 단점이 있을 뿐만 아니라, 이차원 블록 단위 정합 과정을 거쳐야 하기 때문에 상당한 연산량이 요구된다. 이러한 문제점을 보완하기 위해 본 논문은 일차원 패치 단위 학습을 통해 학습 정보 저장용 메모리 크기 및 연산량을 크게 줄이는 기법을 제안한다. 실험 결과에 따르면, 제안한 기법은 전통적인 bicubic 보간 기법보다 평균 0.7dB 정도 높은 PSNR을 보이며, SSIM도 평균 0.01이상 향상되는 결과를 보인다.