Cryptography and system state estimation using polarization states

We present new results on cryptography and system state estimation using polarization states of photons. Current quantum cryptography applications are based on the BB84 protocol which is not secure against photon siphoning attacks. Recent research has established that the information that can be obtained from a pure state in repeated experiments is potentially infinite. This can be harnessed by sending a burst of photons confined to a very narrow time window, each such burst containing several bits of information. The proposed method represents a new way of transmitting secret information. While polarization shift-keying methods have been proposed earlier, our method is somewhat different in that it proposes to discover the polarization state of identical photons in a burst from a laser which codes binary information. We also present results on estimating the state of a system based on the polarization of the received photons which can have applications in intrusion detection.