Magnetic and electrical/thermal transport properties of Mn-doped Mn+1AXn phase compounds Cr2-xMnxGaC (0 《 x 《 1)

In this paper, we report the effects of partial substitution of Mn for Cr on the structural, magnetic, and electrical/thermal transport properties of Mn+1AXn phase compounds Cr2−xMnxGaC (0 ≤ x ≤ 1). As a result, the unit cell volume and the thermal conductivity decrease while the resistivity increases with increasing x. Interestingly, the magnetism of Cr2−xMnxGaC changes from the nonmagnetic Cr2GaC (x = 0) to the ferrimagnetic CrMnGaC (x = 1). In order to shed light on the discrepancy observed between Hall coefficient and Seebeck coefficient of Cr2GaC, the electrical conductivity, Hall coefficient, and magnetoresistance are analyzed within a two-band model. Furthermore, an upturn is observed in low-temperature specific heat of Cr2−xMnxGaC, which may be related with the magnetic Mn dopant.

[1]  B. Alling,et al.  Magnetic nanoscale laminates with tunable exchange coupling from first principles , 2011 .

[2]  S. Saxena,et al.  Bulk moduli of Cr 2GaC and Ti 2GaN up to 50 GPa , 2010 .

[3]  J. Etzkorn,et al.  Ti2GaC, Ti4GaC3 and Cr2GaC—Synthesis, crystal growth and structure analysis of Ga-containing MAX-phases Mn+1GaCn with M=Ti, Cr and n=1, 3 , 2009 .

[4]  Michel W. Barsoum,et al.  Electronic and thermal properties of Ti3Al(C0.5,N0.5)2, Ti2Al(C0.5,N0.5) and Ti2AlN , 2008 .

[5]  Oren D. Leaffer,et al.  Electrical, thermal, and elastic properties of the MAX-phase Ti2SC , 2008 .

[6]  Wenli Song,et al.  Strong spin fluctuations and possible non-Fermi-liquid behavior in AlCNi3 , 2006 .

[7]  Wenli Song,et al.  Influence of carbon concentration on structural, magnetic and electrical transport properties for antiperovskite compounds AlCxMn3 , 2006 .

[8]  S. Lofland,et al.  Electrical transport, thermal transport, and elastic properties of M 2 Al C ( M = Ti , Cr, Nb, and V) , 2005 .

[9]  M. Barsoum,et al.  Synthesis and Characterization of Ti3AlC2 , 2004 .

[10]  S. Lofland,et al.  Electronic, thermal, and elastic properties of Ti 3 Si 1 − x Ge x C 2 solid solutions , 2004 .

[11]  R. W. Hill,et al.  Giant electron-electron scattering in the Fermi-liquid state of Na0.7CoO2. , 2004, Physical review letters.

[12]  S. Lofland,et al.  Magnetotransport properties of the ternary carbide Ti3SiC2: Hall effect, magnetoresistance, and magnetic susceptibility , 2001 .

[13]  R. W. Hill,et al.  Breakdown of Fermi-liquid theory in a copper-oxide superconductor , 2001, Nature.

[14]  M. Barsoum,et al.  Electrical conductivity, thermopower, and Hall effect of Ti 3 AlC 2 , Ti 4 AlN 3 , and Ti 3 SiC 2 , 2000 .

[15]  M. Barsoum,et al.  Synthesis of Ti4AlN3 and phase equilibria in the Ti-Al-N system , 2000 .

[16]  P. Finkel,et al.  Low temperature dependencies of the elastic properties of Ti4AlN3, Ti3Al1.1C1.8, and Ti3SiC2 , 2000 .

[17]  Michel W. Barsoum,et al.  The MN+1AXN phases: A new class of solids , 2000 .

[18]  H. D. Yang,et al.  Field-dependent specific heat in Fe 2 VAl and the question of possible 3 d heavy fermion behavior , 1999 .

[19]  J. C. Ho,et al.  Low temperature heat capacities of Ti3Al1.1C1.8, Ti4AlN3, and Ti3SiC2 , 1999 .

[20]  M. Barsoum,et al.  High-Resolution Transmission Electron Microscopy of Ti4AlN3, or Ti3Al2N2 Revisited , 1999 .

[21]  M. Barsoum,et al.  Dislocations, kink bands, and room-temperature plasticity of Ti3SiC2 , 1999 .

[22]  M. Barsoum,et al.  Room-temperature ductile carbides , 1999 .

[23]  M. Barsoum,et al.  Layered machinable ceramics for high temperature applications , 1997 .

[24]  M. Barsoum,et al.  Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2 , 1996 .

[25]  J. Lis,et al.  Solid combustion synthesis of Ti3SiC2 , 1989 .

[26]  G. Blasse New compounds with eulytine structure: Crystal chemistry and luminescence , 1970 .