New micelle-like polymer aggregates made from PEI-PLGA diblock copolymers: micellar characteristics and cellular uptake.

[1]  T. Park,et al.  Poly(L-lysine)-g-poly(D,L-lactic-co-glycolic acid) micelles for low cytotoxic biodegradable gene delivery carriers. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[2]  T. Park,et al.  Surface immobilization of galactose onto aliphatic biodegradable polymers for hepatocyte culture. , 2002, Biotechnology and bioengineering.

[3]  E. Wagner,et al.  Design and gene delivery activity of modified polyethylenimines. , 2001, Advanced drug delivery reviews.

[4]  M. Chanda,et al.  A New Method of Gel-Coating Polyethyleneimine (PEI) on Organic Resin Beads. High Capacity and Fast Kinetics of PEI Gel-Coated on Polystyrene , 2001 .

[5]  J. Leroux,et al.  Novel Polymeric Micelles Based on the Amphiphilic Diblock Copolymer Poly(N-vinyl-2-pyrrolidone)-block-poly(D,L-lactide) , 2001, Pharmaceutical Research.

[6]  T. Park,et al.  Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[7]  A. Thünemann,et al.  Polyethylenimine complexes with retinoic acid: Structure, release profiles, and nanoparticles. , 2000 .

[8]  T. Okano,et al.  Doxorubicin-loaded poly(ethylene glycol)-poly(beta-benzyl-L-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[9]  A. Mikos,et al.  Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[10]  I. Kwon,et al.  Synthesis and Micellar Characterization of Amphiphilic Diblock Copolymers Based on Poly(2-ethyl-2-oxazoline) and Aliphatic Polyesters1 , 1999 .

[11]  M. Antonietti,et al.  Interaction of metal compounds with ‘double-hydrophilic’ block copolymers in aqueous medium and metal colloid formation , 1998 .

[12]  Timothy R. Cherry,et al.  Self-assembly in mixtures of poly(ethylene oxide)-graft-poly(ethyleneimine) and alkyl sulfates , 1998 .

[13]  S. Webber,et al.  Polymer Micelles from Poly(acrylic acid)-graft-polystyrene , 1998 .

[14]  J. Behr,et al.  In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. , 1997, Bioconjugate chemistry.

[15]  H. Alakomi,et al.  Polyethyleneimine is an effective permeabilizer of gram-negative bacteria. , 1997, Microbiology.

[16]  Kui Yu,et al.  Ion-Induced Morphological Changes in “Crew-Cut” Aggregates of Amphiphilic Block Copolymers , 1996, Science.

[17]  Stephen E. Harding,et al.  Polylactide−Poly(ethylene glycol) Copolymers as Drug Delivery Systems. 1. Characterization of Water Dispersible Micelle-Forming Systems , 1996 .

[18]  Kazunori Kataoka,et al.  Block copolymer micelles as long-circulating drug vehicles , 1995 .

[19]  B. Mattiasson,et al.  Affinity Thermoprecipitation of Yeast Alcohol Dehydrogenase through Metal Ion‐Promoted Binding with Eudragit‐Bound Cibacron Blue 3GA , 1995, Biotechnology progress.

[20]  Mitchell A. Winnik,et al.  Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study , 1991 .

[21]  Alexander V Kabanov,et al.  Pluronic block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers. , 2002, Critical reviews in therapeutic drug carrier systems.